CFP last date
20 December 2024
Reseach Article

A Prediction Model for Information Diffusion in Online Social Network

by John K. Omoniyi, Folasade Adedeji, Joshua J. Tom
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 174 - Number 27
Year of Publication: 2021
Authors: John K. Omoniyi, Folasade Adedeji, Joshua J. Tom
10.5120/ijca2021921158

John K. Omoniyi, Folasade Adedeji, Joshua J. Tom . A Prediction Model for Information Diffusion in Online Social Network. International Journal of Computer Applications. 174, 27 ( Mar 2021), 1-10. DOI=10.5120/ijca2021921158

@article{ 10.5120/ijca2021921158,
author = { John K. Omoniyi, Folasade Adedeji, Joshua J. Tom },
title = { A Prediction Model for Information Diffusion in Online Social Network },
journal = { International Journal of Computer Applications },
issue_date = { Mar 2021 },
volume = { 174 },
number = { 27 },
month = { Mar },
year = { 2021 },
issn = { 0975-8887 },
pages = { 1-10 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume174/number27/31843-2021921158/ },
doi = { 10.5120/ijca2021921158 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:23:13.179353+05:30
%A John K. Omoniyi
%A Folasade Adedeji
%A Joshua J. Tom
%T A Prediction Model for Information Diffusion in Online Social Network
%J International Journal of Computer Applications
%@ 0975-8887
%V 174
%N 27
%P 1-10
%D 2021
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The emergence of online social networks has brought many new platforms, e.g., Facebook, Flickr, YouTube, Sina Micro-blog, LinkedIn, and Twitter. These platforms are imperative constituents within the diffusion of information at an expansive scale, and Twitter is among the foremost utilized microblogging and online social organizing administrations. In Twitter, a title, phrase, or point tweeted at a greater rate than others are called a "trending topic" or "trend," and it becomes imperative to make available ways to evaluate this phenomenon. Assessing information diffusion appears to be an unsolvable perplex as these "trending topics" constitute a flood of views, thoughts, recommendations, considerations, proposals, etc., produced by users of these social networks. This paper thoroughly examined Twitter's trending topics in September 2019. We accessed Twitter's trends API for the month's trending topics and concocted six criteria to assess the dataset. These six criteria are location, lexical analysis, trending time, tweet volume, promo/giveaway, and social media influencer. Based on the criteria earlier mentioned, a prediction model was developed based on these criteria. Their results were used to predict how a piece of information would diffuse on the Twitter platform.

References
  1. Agrawal, D., Budak, C., & Abbadi, A. El. (2011). Information diffusion in social networks: Observing and influencing societal interests. Proceedings of the VLDB Endowment, 4(12), 1512–1513.
  2. Annamoradnejad, I., & Habibi, J. (2019). A Comprehensive Analysis of Twitter Trending Topics. 22–27.
  3. Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. WWW’12 - Proceedings of the 21st Annual Conference on World Wide Web, 519–528.
  4. Behera, P. C. (2016). Data Mining Technique for Tracking of Information Diffusion in Online Social Network. V(Iv), 102–105.
  5. Biau, G. (2010). Analysis of a Random Forests Model Random forests. 1–40.
  6. Bouanan, Y., Forestier, M., Ribault, J., Zacharewicz, G., Vallespir, B., & Moalla, N. (2015). Simulating information diffusion in a multidimensional social network using the DEVS formalism (WIP). Simulation Series, 47(8), 63–68.
  7. Breiman, L. (2001). Random Forest Draft. 1–33.
  8. Buskens, V., & Yamaguchi, K. (1999). A new model for information diffusion in heterogeneous social networks. Sociological Methodology, 29(1), 281–325.
  9. De C Gatti, M. A., Appel, A. P., Dos Santos, C. N., Pinhanez, C. S., Cavalin, P. R., & Neto, S. B. (2013). A simulation-based approach to analyze the information diffusion in Microblogging Online Social Network. Proceedings of the 2013 Winter Simulation Conference - Simulation: Making Decisions in a Complex World, WSC 2013, (Jennings 2001), 1685–1696.
  10. Guille, A. (2013). Information Diffusion in Online Social Networks. New York: ACM.
  11. Guille, A., Favre, C., Hacid, H., & Zighed, D. (2013). SONDY: An open source platform for social dynamics mining and analysis. Proceedings of the ACM SIGMOD International Conference on Management of Data, (May 2014), 1005–1008.
  12. Henry, D., Stattner, E., & Collard, M. (2017). Social media, diffusion under influence of parameters: Survey and perspectives. Procedia Computer Science, 109, 376–383.
  13. Hu, Y., Aiello, M., & Hu, C. (2018). Information diffusion in online social networks: A compilation. Journal of Computational Science, 28, 204–205.
  14. Hu, Y., Song, R. J., & Chen, M. (2017). Modeling for Information Diffusion in Online Social Networks via Hydrodynamics. IEEE Access, 5.
  15. Iribarren, J. L. (2011). Information Diffusion Epidemics in Social Networks. SSRN Electronic Journal, 1–12.
  16. Jalali, M. S., Ashouri, A., Herrera-Restrepo, O., & Zhang, H. (2016). Information diffusion through social networks: The case of an online petition. Expert Systems with Applications, 44, 187–197.
  17. Kalogeratos, A., Scaman, K., Corinzia, L., & Vayatis, N. (2018). Information Diffusion and Rumor Spreading. Cooperative and Graph Signal Processing, 651–678.
  18. Li, M., Wang, X., Gao, K., & Zhang, S. (2017). A survey on information diffusion in online social networks: Models and methods. Information (Switzerland), 8(4).
  19. Luu, M. D., Lim, E. P., Hoang, T. A., & Chua, F. C. T. (2012). Modeling diffusion in social networks using network properties. ICWSM 2012 - Proceedings of the 6th International AAAI Conference on Weblogs and Social Media, 218–225.
  20. Marra, G., Nocera, A., Ricca, F., Terracina, G., & Ursino, D. (2014). Investigating information diffusion in a multi-social-network scenario via answer set programming. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8741, 191–196.
  21. Social network analysis and Information Diffusion.
  22. Myers, S. A., Zhu, C., Leskovec, J., & Bakshy, E. (2011). Information Diffusion and Social Influence in Online Networks. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 33–41.
  23. Viksnin, I., Iurtaeva, L., Tursukov, N., & Muradov, A. (n.d.). The Model of Information Diffusion in Social Networking Service.
  24. Wei, Z., Yanqing, Y., Hanlin, T., Qiwei, D., & Taowei, L. (2013). Improved SI Model for Information Dissemination. Proceedings of the 2012 International Conference of MCSA, 145–150.
  25. Wellman, M. P. (n.d.). Modeling Information Diffusion in Heterogeneous Information Networks
  26. Weng, L. (2014). Information diffusion on online social networks. ProQuest Dissertations and Theses, (April), 223.
  27. Weskida, M., & Michalski, R. (2019). Finding influentials in social networks using evolutionary algorithm. Journal of Computational Science, 31, 77–85.
Index Terms

Computer Science
Information Sciences

Keywords

Social network information diffusion twitter Predictive model trend