CFP last date
20 January 2025
Reseach Article

On M-ambiguity of Words corresponding to a Parikh Matrix

by Amrita Bhattacharjee
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 173 - Number 9
Year of Publication: 2017
Authors: Amrita Bhattacharjee
10.5120/ijca2017915439

Amrita Bhattacharjee . On M-ambiguity of Words corresponding to a Parikh Matrix. International Journal of Computer Applications. 173, 9 ( Sep 2017), 44-48. DOI=10.5120/ijca2017915439

@article{ 10.5120/ijca2017915439,
author = { Amrita Bhattacharjee },
title = { On M-ambiguity of Words corresponding to a Parikh Matrix },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2017 },
volume = { 173 },
number = { 9 },
month = { Sep },
year = { 2017 },
issn = { 0975-8887 },
pages = { 44-48 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume173/number9/28365-2017915439/ },
doi = { 10.5120/ijca2017915439 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:20:50.539807+05:30
%A Amrita Bhattacharjee
%T On M-ambiguity of Words corresponding to a Parikh Matrix
%J International Journal of Computer Applications
%@ 0975-8887
%V 173
%N 9
%P 44-48
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

M-ambiguous words are the problem of Parikh matrix. In this paper an algorithm is introduced to find the M-ambiguous ternary words corresponding to a 4x4 matrix. The concept of M-ambiguity Reduction factor is introduced. With the help of this M-ambiguity Reduction factor the problem of M-ambiguity can be solved to some extent.

References
  1. Atanasiu, A. 2007. Binary amiable words, Int. J. Found. Comput. Sci 18(2), 387- 400.
  2. Atanasiu, A., Atanasiu, R and Petre, I. 2008. Parikh matrices and amiable words, Theoretical Computer Science 390, 102--109.
  3. Atanasiu, A., Vide C.M. and Mateescu, A. 2001. On the injectivity of the parikh matrix mapping, Fundam. Informa. 46,1-11.
  4. Bhattacharjee, A and Purkayastha, B.S. 2014. Parikh matrices and words over tertiary ordered alphabet, International Journal of Computer Applications 85(4), 10-15.
  5. Bhattacharjee, A and Purkayastha, B.S. 2014.Application of ratio property in searching of m-ambiguous words and its generalization, 3rd International Conference on Soft Computing for Problem Solving, AISC (SocProS 2013), Springer India 258, 857-865.
  6. Bhattacharjee, A and Purkayastha, B.S. 2014. Some alternative ways to find M-ambiguous binary words corresponding to a Parikh matrix, International Journal on Computational Sciences and Applications (IJCSA) 4(1),53-64.
  7. Bhattacharjee, A and Purkayastha, B.S. 2014. Parikh matrices and words over ternary alphabet, 4th International Conference on Soft Computing for Problem Solving, AISC (SocProS 2014), Springer India 335,135-145.
  8. Ding, C and Salomaa, A. 2006. On some problems of Mateescu concerning sub word occurences, Fundamenta Informaticae 72, 1-15.
  9. Mateescu, A., Salomaa, A., Salomaa, K and Yu, S. 2001 A sharpening of the parikh mapping, Theoret. Informetics Appl. 35,551-564.
  10. Mateescu, A., Salomaa, A., Salomaa, K and Yu, S. 2001. On an extension of the Parikh mapping, T.U.C.S Technical Report No 364.
  11. Mateescu, A., Salomaa, A and Yu, S. 2004. Subword histories and parikh matrices, J. Comput. Syst. Sci. 68, 1-21.
  12. Mateescu, A and Salomaa, A. 2004. Matrix indicators for subword occurences and ambiguity, Int. J. Found. Comput. Sci. 15, 277-292.
  13. Parikh, R.J. 1966. On the context-free languages, Journal of the Association for Computing Machinery 13, 570-581.
  14. Salomaa, A. 2003. Counting (scattered) subwords, EATCS Bulletin 81, 165-179.
  15. Salomaa, A. 2005. Connections between subwords and certain matrix mappings, Theoretical Computer Science 340,188-203.
  16. Salomaa, A. 2006. Independence of certain quantities indicating subword occurrences, Theoretical Computer Science 362(1), 222-231.
  17. Salomaa, A. et. al, 2006. Subword conditions and subword histories, Information and Computation 204, 1741-1755.
  18. Serbanuta, V.N. and Serbanuta. T.F. 2006. Injectivity of the Parikh matrix mappings revisited, Fundamenta Informaticae, XX, IOS Press, 1-19.
  19. Subramanian, K.G., Huey, A. M and Nagar, A. K. 2009. On parikh matrices, Int. J. Found. Comput. Sci. 20(2), 211-219.
  20. Subramanian, K.G., Isawasan, P and Venkat, I. 2013.Parikh matrices and istrail morphism, Malaysian Journal of Fundamental and Applied Sciences 9(1), 5-9.
Index Terms

Computer Science
Information Sciences

Keywords

Parikh matrix sub word amiable words or M- ambiguous words.