CFP last date
20 December 2024
Reseach Article

Some Strong and Δ - Convergence Results in Hyperbolic Spaces

by Preety Malik
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 170 - Number 9
Year of Publication: 2017
Authors: Preety Malik
10.5120/ijca2017914906

Preety Malik . Some Strong and Δ - Convergence Results in Hyperbolic Spaces. International Journal of Computer Applications. 170, 9 ( Jul 2017), 11-16. DOI=10.5120/ijca2017914906

@article{ 10.5120/ijca2017914906,
author = { Preety Malik },
title = { Some Strong and Δ - Convergence Results in Hyperbolic Spaces },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2017 },
volume = { 170 },
number = { 9 },
month = { Jul },
year = { 2017 },
issn = { 0975-8887 },
pages = { 11-16 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume170/number9/28097-2017914906/ },
doi = { 10.5120/ijca2017914906 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:18:01.301835+05:30
%A Preety Malik
%T Some Strong and Δ - Convergence Results in Hyperbolic Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 170
%N 9
%P 11-16
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The aim of this paper is to prove some strong and Δ-convergence results for modified Khan et. al. iterative procedures using total asymptotically quasi-nonexpansive mappings in Hyperbolic spaces. The results are the generalization and extension of some results of Agarwal et. al. [12], Cho and Abbas [17], Basarir and Sahin [10], Chang et. al. [18], Agarwal et. al. [12], Aggarwal and Chugh [11], Khan et. al. [15], Sahin and Basarir [1].

References
  1. Sahin, A. and Basarir, M. On the strong convergence of a modified S-iteration process for asymptotically quasi-nonexpansive mappings in a CAT(0) space, Fixed Point Theory and Applications, vol. 2013, no 12, (2013) , doi:10.1186/1687-1812-2013-12.
  2. Khan, A. R., Fukhar-ud-din, H. and Khan, M. A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., vol.54, (2012), 12 pages.
  3. Fukhar-ud-din, H. and Khan, S. H. 2007 Convergence of iterates with errors of asymptotically quasi nonexpansive mappings and applications, J. Math. Anal. Appl., vol. 328, (2007), 821-829.
  4. Senter, H. F. and Dotson, W. G. Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., vol. 44, (1974), 375–380.
  5. Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc., vol. 43, (1991), 153-159.
  6. Tan, K. K. and Xu, H. K. Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., vol. 122, (1994), 733-739.
  7. Goebel, K. and Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, proc. Amer. Math. Soc., vol. 35, no. 1, (1972), 171-174.
  8. Qihou, L. Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., vol. 259, (2001), 1-7.
  9. Leustean, L. Nonexpansive iterations in uniformly convex W-hyperbolic spaces. In: Leizarowitz, A, Mordukhovich, BS, Shafrir, I, Zaslavski, A (eds.) Nonlinear Analysis and Optimization I: Nonlinear Analysis. Contemp. Math., vol. 513, pp. 193-209. Am. Math. Soc., Providence (2010)
  10. Basarir, M. and Sahin A., On the strong and Δ-convergence for total asymptotically nonexpansive mappings 0n a CAT(0) space, Carpathian Math. Publ., vol. 5, no 2, (2013), 170-179.
  11. Aggarwal, M. and Chugh, R. Strong and -convergence of Khan et. al. iterative procedure in CAT(0) spaces, Differential Geometry, Functional Analysis and Applications, Narosa Publishing House, New Delhi, 2015, 143-155.
  12. Agarwal, R. P., O'Regan, D. and Sahu D. R., Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J.Nonlinear Convex Anal., vol. 8, no. 1, (2007), 61-79.
  13. Chugh, R. Preety and  Aggarwal, M. Some convergence results for modified S-iterative scheme in Hyperbolic spaces, International Journal of Computer Applications, 80 (6), 2013, 20-23.
  14. Dhompongsa, S. and Panyanak, B. On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl., vol 56, (2008), 2572-2579.
  15. Khan S. H. and Jong Kyu Kim, Common fixed points of two nonexpansive mappings by a modified faster iteration scheme, Bull. Korean Math. Soc., vol. 47, no. 5, (2010), 973-985.
  16. Khan, S. H. and Abbas, M. Strong and Δ-convergence of some iterative schemes in CAT(0) spaces, Computers and Mathematics with Applications, vol. 61, (2011), 109-116.
  17. Khan, S. H., Cho, Y. J. and Abbas, M. Convergence to common fixed points by a modified iteration process, J. Appl math. Comput. Vol. 35, (2011), 607-616.
  18. Chang, S. S., Wang, L., Joseph Lee, H. W. and Chan, C. K. Demiclosed principle and Δ-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) Spaces, Appl. Math. Comput., vol. 219, (2012) , 2611-2617.
  19. Diaz, S. B. and Metcalf, F. B. On the structure of the set of sequential limit points of successive approximations, Bull. Amer. Math. Soc., vol. 73, (1967), 516-519.
  20. Lim, T.C. Remarks on some fixed point theorems, Proc. Amer. Math. Soc., vol. 60, (1976), 179–182.
  21. Shimizu, T. and Takahashi, W. Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., vol. 8, (1996), 197-203.
  22. Kuczumow, T. An almost convergence and its applications, Ann. Univ. Mariae Curie-Sklodowska, Sect. A., vol. 32, (1978),79-88.
  23. Kohlenbach, U.  Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., vol. 357(2005), 89-128.
  24. Petryshyn, W. V. and Williamson, T. E. Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. math. Anal. Appl., vol. 43, (1973), 459-497.
  25. Takahashi, W.  A convexity in metric spaces and nonexpansive mapping, Kodai Math. Sem. Rep., vol. 22, (1970), 142-149.
Index Terms

Computer Science
Information Sciences

Keywords

Hyperbolic spaces Δ-convergence strong convergence total asymptotically quasi nonexpansive mappings common fixed point Iterative procedures.