CFP last date
20 January 2025
Reseach Article

Performance Evaluation of Distortion Measures for Retinal Images

by Nirmala S. R, Dandapat S., Bora P. K.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 17 - Number 6
Year of Publication: 2011
Authors: Nirmala S. R, Dandapat S., Bora P. K.
10.5120/2225-2835

Nirmala S. R, Dandapat S., Bora P. K. . Performance Evaluation of Distortion Measures for Retinal Images. International Journal of Computer Applications. 17, 6 ( March 2011), 17-23. DOI=10.5120/2225-2835

@article{ 10.5120/2225-2835,
author = { Nirmala S. R, Dandapat S., Bora P. K. },
title = { Performance Evaluation of Distortion Measures for Retinal Images },
journal = { International Journal of Computer Applications },
issue_date = { March 2011 },
volume = { 17 },
number = { 6 },
month = { March },
year = { 2011 },
issn = { 0975-8887 },
pages = { 17-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume17/number6/2225-2835/ },
doi = { 10.5120/2225-2835 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:04:53.259674+05:30
%A Nirmala S. R
%A Dandapat S.
%A Bora P. K.
%T Performance Evaluation of Distortion Measures for Retinal Images
%J International Journal of Computer Applications
%@ 0975-8887
%V 17
%N 6
%P 17-23
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Evaluating the quality of processed retinal images is an important issue in applications such as telemedicine. The traditional image quality measures are having limitation in emphasizing the loss of clinically significant information. We previously proposed a wavelet weighted blood vessel distortion measure (WBVDM) for retinal images. The WBVDM gives more importance to the distortion in clinical features (blood vessels) and less importance to the clinically nonsignificant distortion. This paper presents a statistical evaluation of the performance of a number of image quality measures in quantifying the distortion in retinal images. The measures are then investigated in terms of their correlation with subjective evaluation using the Pearson linear correlation coefficient (PLCC) and Spearman rank order correlation coefficient (SROCC). Their statistical behavior is also evaluated in terms of how discriminating they are to distortion artifacts when tested on a variety of images using the analysis of variance (ANOVA) method. The experimental results indicate that WBVDM performs better by showing higher values of PLCC, SROCC and ANOVA analysis.

References
  1. N. Patton, T. M. Aslam, T. MacGillivray, I. J. Deary, B. Dhillon, R. H. Eikelboom, K. Yogesan, I. J. Constable, Retinal image analysis: Concepts, applications and potential, Progress in retinal and eye research, 25(1), 2006, 99-127.
  2. A. M. Eskicioglu, Quality measurement for monochrome compressed images in the past 25 years, 2000, Proc. IEEE Int. Conf. Acoustics,Speech,Signal Processing, 4, 1907-1910, Istanbul, Turkey, Jun 2000.
  3. H. R. Sheikh, M. F. Sabir, A. C. Bovik, A statistical evaluation of recent full reference image quality assessment algorithms, IEEE Tans. Image Process. 15(11), 3441-3452, 2006.
  4. P. Cosman, R. M Gray, R. A Olshen. Evaluating the Quality of Compressed Medical Images: SNR, Subjective Rating and Diagnostic accuracy, Proc. IEEE, 82 (6), 919-932, 1994.
  5. S. Lee and Y.Wang, Automatic retinal image quality assessment and enhancement, Proceedings of SPIE Image Processing, 1581–1590, 1999.
  6. M. Lalonde, L. Gagnon, and MC Boucher, Automatic visual quality assessment in optical fundus images, Proceedings of Vision Interface, 259-264, 7-9, 2001.
  7. D. B Usher, M. Himaga, and M. J. Dumskyj, Automated assessment of digital fundus image quality using detected vessel area, Proceedings of Medical Image Understanding and Analysis, 81–84, British Machine Vision Association (BMVA), 2003.
  8. Alan D Fleming, Sam Philip, Keith A Goatman, John A Olson, and Peter F Sharp, Automated assessment of diabetic retinal image quality based on clarity and field definition, Invest Ophthalmol Vis Sci., 47(3), 1120–1125, 2006.
  9. Meindert Niemeijer, Michael D Abramoff, and Bram van Ginneken, Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening, Med Image Anal, 10(6), 888–898, 2006.
  10. M. J. Cree, H. F. Jelinek, The effect of JPEG compression on automated detection of microaneurysms in retinal images, Proc. of SPIE-IS\&T Electronic Imaging, 6813, 68130M-68130M 10, 2008.
  11. P. Hansgen, P. E. Undrill, M. J. Cree, The application of wavelets to retinal image compression and its effect on automatic microaneurysm analysis, Computer Methods and Programs in Biomedicine, 56(1), 1-10, 1998.
  12. R. H. Eikelboom, K. Yogesan, C. J. Barry, I. J. Constable, M. T. Kearney, L. Jitskaia, P. H. House, Methods and Limits of Digital Image Compression of Retinal Images for Telemedicine, Investigative Ophthalmology and Visual Science, 41(7), 1916-1924, 2000. D. Beauregard, J. Lewis, M. Piccolo, H. Bedell, Diagnosis of glaucoma using telemedicine - the effect of compression on the evaluation of optic nerve head cup-disc ratio, Journal of Telemedicine and Telecare, 6, 123-125, 2000.
  13. J. Conrath, A. Erginay, R. Giorgi, A. Lecleire-Collet, E. Vicaut, J-C Klein, A. Gaudric, P. Massin, Evaluation of the effect of JPEG and JPEG2000 image compression on the detection of diabetic retinopathy, Eye, Official journal of The Royal College of Ophthalmologists, 21, 487–493, 2006.
  14. A. Basu , A. D. Kamal, W. Illahi, M. Khan, P. Stavrou, R. E. J. Ryder, Is digital image compression acceptable within diabetic retinopathy screening?, Diabetic Medicine, 20(9), 766 - 771, 2003.
  15. Y. K. Lai and C. C. J. Kuo, A Harr wavelet approach to compressed image quality measurements, J. of Visual Commun. and Image Representation, 11, 17-40, 2000.
  16. E. Dumic, S. Grgic, M. Grgic, New image-quality measure based on wavelets, J. of Electronic Imaging 19(1), 011-018, 2010.
  17. Z. Gao and Y. F. Zheng, Quality constrained compression using DWT-based image quality metric, IEEE Trans. Circuits and Systems for video technology, 18(7), 910-922, 2008.
  18. M.Unser, A.Aldroubi, A review of wavelets in biomedical applications, in Proc. IEEE, 84(4), 626 -638, 1996.
  19. S. Mallat, S. Zhong, Characterization of signals from multi-scale edges, IEEE Trans. Pattern Analysis and machine Intelligence, 14 (7), 710-732, 1992.
  20. B. Erickson, A. Manduca, P. Palisson, K. Persons, F. Earnest, IV, V. Savcenko, N.Hangiandreou, Wavelet compression of medical images, Radiology, 206, 599-607, 1998.
  21. H. Ringl, R. E. Schernthaner, A. A. Bankier, M. Weber, M. Prokop, C. J. Herold, C. S. Prokop, JPEG2000 compression of thin-section CT images of the lung: Effect of compression ratio on image quality, Radiology, 240, 869-877, 2006.
  22. TJ Chen, KS Chuang, Wu J, SC Chen , IM Hwang, ML Jan, Quality degradation in lossy wavelet image compression, J Digit Imaging 16(2), 210-215, 2003.
  23. S. R. Nirmala, S. Dandapat, P. K. Bora,Wavelet weighted blood vessel distortion measure for retinal images, Biomedical Signal processing and Control, 5(4), 282-291,2010.
  24. M. Niemeijer, J. J. Staal, B. van Ginneken, M. Loog, M.D. Abramoff, Comparative study of retinal vessel segmentation methods on a new publicly available database, SPIE Medical Imaging, 5370, 648-656, 2004.
  25. G. K. Wallace, The JPEG still picture compression standard,IEEE Trans. Consum. Electron, 38(1), 18–34, 1992.
  26. A. Said and W. A. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. Circuits Syst. Video Technol. 6(3),243–250, 1996.
  27. ITU-R Recommendation BT.500-11, Methodology for the subjective assessment of the quality of the television pictures, International Telecommunication Union, Geneva, Switzerland, 2002.
  28. S. Wong, L. Zaremba, D. Gooden, H. K. Huang, Radiological image compression:\; A review, Proc. IEEE, 83 (2), 194-219, 1995.
  29. Z. Wang, A. C. Bovik, H. Sheikh, E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Trans. Image Process., 13(4), 600-612, 2004.
  30. Z. Wang, E. P. Simoncelli, and A. C. Bovik, Multi-scale structural similarity for image quality assessment, IEEE Asilomar Conf. Signals, Systems, and Computers, Nov. 2003.
  31. D. M. Chandler and S. S. Hemami, VSNR: a wavelet-based visual signal-to-noise ratio for natural images, IEEE Trans. Image Process. 16(9), 2284–2298, Sept. 2007.
  32. H. R. Sheikh, A. C. Bovik, and G. de Veciana, An information fidelity criterion for image quality assessment using natural scene statistics, IEEE Trans. Image Process., 14, (12), 2117–2128, 2005.
  33. H. R. Sheikh and A. C. Bovik, Image information and visual quality, IEEE Trans. Image Process., 15(2), 430–444, 2006.
  34. Final report from the video quality experts group on the validation of objective models of video quality assessment, PHASE-II, Aug 2003.
  35. A. C. Rencher, Methods of Multivariate Analysis, New York, John Wiley (1995).
Index Terms

Computer Science
Information Sciences

Keywords

Image quality DWT subband coefficients objective measures WBVDM MSSIM