CFP last date
20 December 2024
Reseach Article

Segmentation Method based on Texture Unit Approach Derived on Local Directional Pattern (LDP)

by K. Venkata Subbaiah, V. Vijaya Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 165 - Number 7
Year of Publication: 2017
Authors: K. Venkata Subbaiah, V. Vijaya Kumar
10.5120/ijca2017913908

K. Venkata Subbaiah, V. Vijaya Kumar . Segmentation Method based on Texture Unit Approach Derived on Local Directional Pattern (LDP). International Journal of Computer Applications. 165, 7 ( May 2017), 1-12. DOI=10.5120/ijca2017913908

@article{ 10.5120/ijca2017913908,
author = { K. Venkata Subbaiah, V. Vijaya Kumar },
title = { Segmentation Method based on Texture Unit Approach Derived on Local Directional Pattern (LDP) },
journal = { International Journal of Computer Applications },
issue_date = { May 2017 },
volume = { 165 },
number = { 7 },
month = { May },
year = { 2017 },
issn = { 0975-8887 },
pages = { 1-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume165/number7/27582-2017913908/ },
doi = { 10.5120/ijca2017913908 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:11:46.086662+05:30
%A K. Venkata Subbaiah
%A V. Vijaya Kumar
%T Segmentation Method based on Texture Unit Approach Derived on Local Directional Pattern (LDP)
%J International Journal of Computer Applications
%@ 0975-8887
%V 165
%N 7
%P 1-12
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Image segmentation is one of the crucial steps for image analysis, interpretation and recognition. This paper presents cross diagonal neighborhood approach based on local direction pattern (LDP) descriptor. Edge based segmentation divides images into regions based on local edge responses. The local attributes and edge responses are the crucial factors for edge based segmentation scheme. The LDP descriptor precisely measures the amount of each edge response in and around a centre pixel. The LDP overcomes the noise related problems of the local binary operator (LBP). On LDP images three categories of texture units are derived by partitioning the 3 x 3 neighborhood in to cross texture unit (CTU) and diagonal texture unit (DTU), to reduce the huge dimensionalities involved in the basic texture units and to characterize the local edge information precisely. The segmentation method is tested on five large databases namely Wang, Oxford flowers, Indian facial expressions, Brodatz textures and standard images from Google. The segmentation results demonstrate the efficacy of the proposed method.

References
  1. M. Pietika¬ inen, A. Rosenfeld, “Image segmentation by texture using pyramid node linking”, IEEE Trans. Systems Man Cybernet. 11 ,1981, 822-825
  2. P.C. Chen, T. Pavlidis, “Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm”, Comput. Graphics Image Processing 10 (1979) 172-182.
  3. M. Spann, R. Wilson, “A quad-tree approach to image segmentation which combines statistical and spatial information”, Pattern Recognition, 18 (1985) 257-269.
  4. L.S. Davis, A. Mitiche, Mites: “A model driven, iterative texture segmentation algorithm”, Comput. Graphics Image Processing 19 (1982) 95-110.
  5. J.Y. Hsiao, A.A. Sawchuk, “Unsupervised texture image segmentation using feature smoothing and probabilistic relaxation techniques”, Computer Vision Graphics Image Processing 48 (1989) 1-21.
  6. M. Unser, M. Eden, “Multiresolution feature extraction and selection for texture segmentation”, IEEE Trans. Pattern Anal. Machine Intelligence 11 (1989) , 717-728
  7. H. Deng and D.A. Clausi, “Gaussian MRF rotation-invariant features for image classification”, IEEE Trans. PAMI, vol. 26, pp. 951-955, 2004
  8. J. Mao, A.K. Jain, “Texture classification and segmentation using multi resolution simultaneous autoregressive models”, Pattern Recognition 25 (1992) 173-188
  9. B.B. Chaudhuri, N. Sarkar, “Texture segmentation using fractal dimension”, IEEE Trans. Pattern Anal. Machine Intelligence, 17 (1995) 72-77
  10. ] H. Greenspan, R. Goodman, R. Chellappa, C.H. Anderson, “Learning texture discrimination rules in a multiresolution system”, IEEE Trans. Pattern Anal. Machine Intelligence 16 (1994) 894-901
  11. S. Arivazhagana, L. Ganesanb, Texture segmentation using wavelet transform, Pattern Recognition Letters , Volume 24, Issue 16, December 2003, Pages 3197–3203.
  12. J.-L. Chen, A. Kundu,“ Unsupervised texture segmentation using multichannel decomposition and hidden Markov models”, IEEE Trans. Image Processing, 4 (1995), 603-619.
  13. D.K. Panjwani, G. Healey, “Markov random field models for unsupervised segmentation of textured color images”, IEEE Trans. Pattern Anal. Machine Intelligence, 17 (1995), 939-954.
  14. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: “Discriminative sparse image models for class-specific edge detection and image interpretation”. Proc. 10th European Conf. Computer Vision, 2008, pp. 43–56.
  15. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: “Contour detection and hierarchical image segmentation”, IEEE Trans. Patt. Anal. Mach. Intell., 2010, 33, (5), pp. 898–916
  16. Peng, B., Zhang, L., Zhang, D.: “Automatic image segmentation by dynamic region merging”, IEEE Trans. Image Process., 2011, 20, (12), pp. 3592–3605.
  17. Jähne, B.: “Practical handbook on image processing for scientific and technical applications”, (CRC Press, 2004, 2nd Ed.), Ch. 15
  18. Shi, J., Malik, J.: “Normalized cuts and image segmentation”, IEEE Trans. Patt. Anal. Mach. Intell., 22, (8), 2000, pp. 888–905.
  19. Carreira-Perpinan, M.A.: ‘‘Acceleration strategies for Gaussian mean-shift image segmentation’‘. Proc. IEEE Conf. on Computer Vision Pattern Recognition, Vol. 1, June-2006, pp. 1160–1167
  20. Mayer, A., Greenspan, H.: ‘An adaptive mean-shift framework for MRI brain segmentation’, IEEE Trans. Med. Imag., 28, (8), 2009, pp. 1238–1250
  21. Tao, W., Jin, H., Liu, J.: ‘‘Unified mean shift segmentation and graph region merging algorithm for infrared ship target segmentation’‘, Opt. Eng., 2007, 46, (12), pp. 127002–127002–7
  22. Cour, T., Benezit, F., Shi, J.: ‘‘Spectral segmentation with Multiscale graph decomposition’‘. Proc. IEEE Conf. on Computer Vision Pattern Recognition, vol. 2, June 2005, pp. 1124–1131
  23. Huang, S.H., Chu, Y.H., Lai, S.H., Novak, C.L.: ‘‘Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI’‘, IEEE Trans. Med. Imag., 28, (8), 2009, pp. 1595–1605
  24. Malik, J., Belongie, S., Leung, T., Shi, J.: ‘Contour and texture analysis for image segmentation’, Int. J. Comput. Vis., 2001, 43, (1), pp. 7–27.
  25. Yu, S.X., Shi, J.: ‘Multiclass spectral clustering’. Proc. Int. Conf. Computer Vision, October 2003, pp. 313–319.
  26. Yu, S.X.: ‘‘Segmentation induced by scale invariance’‘. Proc. IEEE Conf. on Comput. Vision Pattern Recognition, June 2005, vol. 1, pp. 444–451.
  27. Yu, S.X.: ‘Segmentation using multiscale cues’‘. Proc. IEEE Conf. on Comput. Vision Pattern Recognition, June 2004, vol. 1, pp. I-247–I-254.
  28. Chen, T.W., Chen, Y.L., Chien, S.Y.: ‘‘Fast image segmentation based on K-means clustering with histograms in HSV color space’‘. Proc. IEEE Int. Workshop on Multimedia Signal Processing, October 2008, pp. 322–325.
  29. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.: ‘‘An efficient method for segmentation of images based on fractional calculus and natural selection’‘, Expert Syst. Appl., 39, (16), 2012, pp. 12407–12417.
  30. Tan, K.S., Isa, N.A.M., Lim, W.H.: ‘Color image segmentation using adaptive unsupervised clustering approach’, Appl. Soft Comput., 2012, 13, pp. 2017–2036.
  31. Tan, K.S., Isa, N.A.M.: ‘‘Color image segmentation using histogram Thresholding – Fuzzy C-means hybrid approach”, Patt. Recogn., 2011, 44, (1), pp. 1–15.
  32. Tan, K.S., Lim, W.H., Isa, N.A.M.: ‘Novel initialization scheme for Fuzzy C-Means algorithm on color image segmentation’, Appl. Soft Comput., 2013, 13, pp. 1832–1852.
  33. T. Ojala, M. Pietika inen, D. Harwood, “ A comparative study of texture measures with classiÞcation based on feature distributions”, Pattern Recognition,29,1996 ,51-59
  34. D. Harwood, T. Ojala, M. Pietika¬ inen, S. Kelman, L.S. Davis, “Texture classiÞcation by center-symmetric auto-correlation, using Kullback discrimination of distributions”, Pattern Recognition Lett. 16 (1995) 1-10
  35. T. Ojala, M. Pietika¬ inen, J. Nisula, “Determining composition of grain mixtures by texture classiÞcation based on feature distributions”, Int. J. Pattern Recognition Artif. Intelligence, 10 (1996) ,73-82
  36. T. Ojala, “Multichannel approach to texture description with feature distributions, Technical Report”, CAR-TR-846, Center for Automation Research, University of Maryland, 1996
  37. .Eswara Reddy, P.Chandra Sekhar Reddy, V.Vijaya Kumar, Texton based shape features on local binary pattern for age classification, International journal of image, graphics and signal processing (IJIGSP), Vol. 7, No.4,pp.54-60, July-2012
  38. Vijaya Kumar V, Jangala. Sasi Kiran, G.S.Murthy, “Pattern based dimensionality reduction model for age classification”, International journal of computer applications (IJCA) ", Vol.79, No.13, , Oct-2013, pp. 14-20.
  39. Gorti S Murty, V.Vijaya Kumar, A. Obulesu, “Age classification based on simple LBP transitions”, International journal of computer science and engineering (IJCSE), Vol.5, No. 10, OCT-2013, pp.885-893.
  40. P.J.S. Kumar , V. Venkata Krishna ,V.Vijaya Kumar, “A Dynamic Transform Noise Resistant Uniform Local Binary Pattern (DTNR-ULBP) for Age Classification”, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 1 (2016), pp 55-60.
  41. P.Viala, M.J. Jones, Robust real time face detection, Int. J. Comput. Vis.57 (2),(2004), 2063-2077.
  42. K. Srinivasa Reddy, V.Vijaya Kumar, B.Eshwara reddy, Face Recognition based on Texture Features using Local Ternary Patterns”, I.J. Image, Graphics and Signal Processing, 2015, 10, 37-46 , ISSN: 2074-9082.
  43. V Vijaya Kumar, U S N Raju, K Chandra Sekaran, V V Krishna, Employing long linear patterns for texture classification relying on wavelets, ICGST-Graphics, vision and image processing (ICGST-GVIP), Vol.8, No.5, pp. 13-21, Jan-2009
  44. ]V.VijayaKumar, Saka Kezia, I.Santi Prabha,” A new texture segmentation approach for medical images”, International journal of scientific & engineering research, Vol. 4, No.1, January-2013, pp.1-5.
  45. Greenblum, A. ; Dept. of Biomed. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Sznitman, R. ; Caenorhabditis Elegans “Segmentation Using Texture-Based Models for Motility Phenotyping”, IEEE Transactions on Biomedical Engineering, Vol-61 , Iss- 8 ), January 2014
  46. A Obulesu,JS Kiran, VV Kumar, Facial image retrieval based on local and regional features, IEEE- 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), 29-31 Oct. 2015, Pp:841 - 846
  47. B.S. Manjunath, W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal. Mach. Intell. 18 (8) (1996) 837–842.
  48. Said Jai-Andaloussi, Mathieu Lamard, Guy Cazuguel, Hamid Tairi, Mohamed Meknassi, Christian Roux, Béatrice Cochener, Content Based Medical Image Retrieval Based on BEMD: use of Generalized Gaussian Density to model BIMFs coefficients, ICGST-GVIP Journal, Volume 10, Issue 2, June 2010
  49. T. Jabid, M.H. Kabir, O. Chae, “Robust facial expression recognition based on local directional pattern”, ETRJ journal 32(5)(2010), pp:784-794
  50. Wang, L. and He , D.C. Texture Classification Using Texture Spectrum,Pattern Recognition, Vol. 23, No. 8, 1990, pp. 905-910
  51. http://wang.ist.psu.edu/docs/related/
  52. http://www.robots.ox.ac.uk/~vgg/data/flowers/
  53. Vidit Jain, Amitabha Mukherjee, 2002, The Indian Face Database, http://vis-www. cs. umass. Edu /~vidit /IndianFaceDatabase/
  54. http://www.ux.uis.no/~tranden/brodatz.html
  55. Anuradha.S.G ] , K.Karibasappa 2 , B.Eswara Reddy, A Segmentation Scheme Based On Uniform LBP And Morphological Approach, Graphics, Vision and Image Processing Journal, ISSN 1687-398X, Volume 16, Issue 1, ICGST, June 2016
  56. Dr.B.Eswara Reddy Anuradha.S.G, Dr. K. Karibasappa, Image segmentation based on LDP with Morphological Treatment, Journal of Theoretical and applied information Technology, Vol-90, Issu. 2, 2016
  57. Yuan Been Chen and Oscal.T.C.Chen, "Image Segmentation Method Using Thresholds Automatically Determined from Picture Contents,” in Eurasip journal on image and video processing, vol.2 (9), pp. 1-16
  58. Yu-hua Chai, Li-qun Gao, and Shun Lu, Lei Tian, “Wavelet-based Watershed for Image Segmentation”, in Proc. of the 6th World Congress on Intelligent Control and Automation, Dalian, China, June , 2006, pp:21 – 23..
  59. Saka.Kezia, Dr.I.Santi Prabha, Dr.V.VijayaKumar, A New Texture Segmentation Approach for Medical Images, International Journal of Scientific & Engineering Research, Volume 4, Issue 1, January-2013
Index Terms

Computer Science
Information Sciences

Keywords

LDP Texture unit cross and diagonal edge responses