CFP last date
20 December 2024
Reseach Article

Histogram of Oriented Gradients and Texture Features for Bone Texture Characterization

by Hany M. Harb, Abeer S. Desuky, Asmaa Mohammed, Rachid Jennane
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 165 - Number 3
Year of Publication: 2017
Authors: Hany M. Harb, Abeer S. Desuky, Asmaa Mohammed, Rachid Jennane
10.5120/ijca2017913820

Hany M. Harb, Abeer S. Desuky, Asmaa Mohammed, Rachid Jennane . Histogram of Oriented Gradients and Texture Features for Bone Texture Characterization. International Journal of Computer Applications. 165, 3 ( May 2017), 23-28. DOI=10.5120/ijca2017913820

@article{ 10.5120/ijca2017913820,
author = { Hany M. Harb, Abeer S. Desuky, Asmaa Mohammed, Rachid Jennane },
title = { Histogram of Oriented Gradients and Texture Features for Bone Texture Characterization },
journal = { International Journal of Computer Applications },
issue_date = { May 2017 },
volume = { 165 },
number = { 3 },
month = { May },
year = { 2017 },
issn = { 0975-8887 },
pages = { 23-28 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume165/number3/27553-2017913820/ },
doi = { 10.5120/ijca2017913820 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:11:24.460928+05:30
%A Hany M. Harb
%A Abeer S. Desuky
%A Asmaa Mohammed
%A Rachid Jennane
%T Histogram of Oriented Gradients and Texture Features for Bone Texture Characterization
%J International Journal of Computer Applications
%@ 0975-8887
%V 165
%N 3
%P 23-28
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Texture Characterization of Bone radiograph images (TCB) is a challenge in the osteoporosis diagnosis organized for the International Society for Biomedical Imaging. The objective of this paper is to distinguish osteoporotic cases from healthy controls on 2D bone radiograph images, using texture analysis. In this paper, we propose a Bone Texture Characterization method based on texture features (Segmentation-based Fractal Texture Analysis (SFTA), Basic Texture and Gabor filters) and compare these resulted features with HOG features for 2D bone structure evaluation. The classification experiments are tested with linear SVM and decision tree classifiers. The classification performance for HOG features are always higher than other texture features, and show excellent classification performance compared to other existing methods.

References
  1. Bartl, R. and Frisch, B., 2009. Osteoporosis: diagnosis, prevention, therapy. Springer Science & Business Media.
  2. Hough, S., 1998. Fast and slow bone losers. Drugs & aging, 12(1), pp.1-7.
  3. Martın-Badosa, E., Elmoutaouakkil, A., Nuzzo, S., Amblard, D., Vico, L. and Peyrin, F., 2003. A method for the automatic characterization of bone architecture in 3D mice microtomographic images. Computerized Medical Imaging and Graphics, 27(6), pp.447-458.
  4. Kumar, B.H. et al., 2016. Recognition of Human Actions in Videos using Computer Vision Techniques, International Journal of Innovations in Engineering and Technology (IJIET), Volume 7 Issue 3.
  5. Tripathi, V., Mittal, A., Gangodkar, D. and Kanth, V., 2016. Real time security framework for detecting abnormal events at ATM installations. Journal of Real-Time Image Processing, pp.1-11.
  6. Lespessailles, E., Gadois, C., Kousignian, I., Neveu, J.P., Fardellone, P., Kolta, S., Roux, C., Do-Huu, J.P. and Benhamou, C.L., 2008. Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporosis international, 19(7), pp.1019-1028.
  7. Houam, L., Hafiane, A., Boukrouche, A., Lespessailles, E. and Jennane, R., 2014. One dimensional local binary pattern for bone texture characterization. Pattern Analysis and Applications, 17(1), pp.179-193.
  8. El Hassani, A.S., El Hassouni, M., Houam, L., Rziza, M., Lespessailles, E. and Jennane, R., 2012, May. Texture analysis using dual tree M-band and Rényi entropy. Application to osteoporosis diagnosis on bone radiographs. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on (pp. 1487-1490). IEEE.
  9. Jennane, R., Touvier, J., Bergounioux, M. and Lespessailles, E., 2014, April. A variational model for trabecular bone radiograph characterization. In Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on (pp. 1283-1286). IEEE.
  10. Yger, F., 2014. Challenge IEEE-ISBI/TCB: application of covariance matrices and wavelet marginals. arXiv preprint arXiv:1410.2663.
  11. El Hassani, A., El Hassouni, M., Jennane, R., Rziza, M. and Lespessailles, E., 2012. Texture analysis for trabecular bone X-ray images using anisotropic morlet wavelet and Rényi entropy. Image and Signal Processing, pp.290-297.
  12. Materka, A., Cichy, P. and Tuliszkiewicz, J., 2000. Texture analysis of x-ray images for detection of changes in bone mass and structure. SERIES IN MACHINE PERCEPTION AND ARTIFICIAL INTELLIGENCE, 40, pp.189-196.
  13. Yger, F., 2014. Challenge IEEE-ISBI/TCB: application of covariance matrices and wavelet marginals. arXiv preprint arXiv:1410.2663.
  14. Challenge IEEE-ISBI : Bone Texture Characterization http://www.univorleans.fr/i3mto/challenge-ieee-isbi-bone.
  15. Costa, A.F., Humpire-Mamani, G. and Traina, A.J.M., 2012, August. An efficient algorithm for fractal analysis of textures. In Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on (pp. 39-46). IEEE.
  16. Aach, T., Kaup, A. and Mester, R., 1995. On texture analysis: Local energy transforms versus quadrature filters. Signal processing, 45(2), pp.173-181.
  17. Fleet, D.J. and Jepson, A.D., 1993. Stability of phase information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12), pp.1253-1268.
  18. Fleet, D.J., Jepson, A.D. and Jenkin, M.R., 1991. Phase-based disparity measurement. CVGIP: Image understanding, 53(2), pp.198-210.
  19. Jepson, A.D. and Jenkin, M.R., 1989, June. The fast computation of disparity from phase differences. In Computer Vision and Pattern Recognition, 1989. Proceedings CVPR'89., IEEE Computer Society Conference on (pp. 398-403). IEEE.
  20. Jenkin, M.R. and Jepson, A.D., 1994. Recovering local surface structure through local phase difference measurements. CVGIP: Image understanding, 59(1), pp.72-93.
  21. Jenkin, M.R., Jepson, A.D. and Tsotsos, J.K., 1991. Techniques for disparity measurement. CVGIP: Image understanding, 53(1), pp.14-30.
  22. Maki, A., Bretzner, L. and Eklundh, J.O., 1995, September. Local Fourier phase and disparity estimates: an analytical study. In International Conference on Computer Analysis of Images and Patterns (pp. 868-873). Springer Berlin Heidelberg.
  23. Sanger, T.D., 1988. Stereo disparity computation using Gabor filters. Biological cybernetics, 59(6), pp.405-418.
  24. Gabor, D., 1946. Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26), pp.429-441.
  25. Daugman, J.G., 1985. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A, 2(7), pp.1160-1169.
  26. Crosier, M. and Griffin, L.D., 2010. Using basic image features for texture classification. International journal of computer vision, 88(3), pp.447-460.
  27. Ali, R. and Ghali, N.I., 2013. An Optimized Approach for E-Commerce Negotiation. IJECCE, 4(1), pp.142-145.
  28. Campbell, C. and Ying, Y., 2011. Learning with support vector machines. Synthesis lectures on artificial intelligence and machine learning, 5(1), pp.1-95.
  29. Abeer S. Desuky and Lamiaa M. El Bakrawy, 2016. Improved Prediction of Post-Operative Life Expectancy after Thoracic Surgery, Advances in Systems Science and Application Vol.16 No.2, pp.70-80.
  30. Costa, A.F., Humpire-Mamani, G. and Traina, A.J.M., 2012, August. An efficient algorithm for fractal analysis of textures. In Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on (pp. 39-46). IEEE.
Index Terms

Computer Science
Information Sciences

Keywords

Texture HOG SFTA Gabor filter Bone Osteoporosis Classification.