We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

An Internet of Things (IoT) Application for Predicting the Quantity of Future Heart Attack Patients

by Fizar Ahmed
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 164 - Number 6
Year of Publication: 2017
Authors: Fizar Ahmed
10.5120/ijca2017913773

Fizar Ahmed . An Internet of Things (IoT) Application for Predicting the Quantity of Future Heart Attack Patients. International Journal of Computer Applications. 164, 6 ( Apr 2017), 36-40. DOI=10.5120/ijca2017913773

@article{ 10.5120/ijca2017913773,
author = { Fizar Ahmed },
title = { An Internet of Things (IoT) Application for Predicting the Quantity of Future Heart Attack Patients },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2017 },
volume = { 164 },
number = { 6 },
month = { Apr },
year = { 2017 },
issn = { 0975-8887 },
pages = { 36-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume164/number6/27491-2017913773/ },
doi = { 10.5120/ijca2017913773 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:10:37.302476+05:30
%A Fizar Ahmed
%T An Internet of Things (IoT) Application for Predicting the Quantity of Future Heart Attack Patients
%J International Journal of Computer Applications
%@ 0975-8887
%V 164
%N 6
%P 36-40
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Now days the heart disease is the leading cause of death worldwide. It is a complex task to predict the heart attack for a medical practitioner since it is required more experience and knowledge. However, heart rate monitoring is the most important scale of measurement that is the influence factor for heart attack with other health fitness like blood pressure, serum cholesterol and level of blood sugar. In the era of rapid revolution of Internet of things (IoT), the sensors for monitoring heart rate are growing in availability to patients. In this paper, I explained the architecture for heart rate and other data monitoring technique and I also explained how to use a machine learning technique like kNN classification algorithm to predict the heart attack by using the collected heart rate data and other health related perimeter.

References
  1. Zhao, W., Wang, C., & Nakahira, Y. (2011, October). Medical application on internet of things. In Communication Technology and Application (ICCTA 2011), IET International Conference on (pp. 660-665). IET.
  2. Chiuchisan, I. U. L. I. A. N. A., & Geman, O. A. N. A. (2014). An Approach of a Decision Support and Home Monitoring System for Patients with Neurological Disorders Using Internet of Things Concepts. WSEAS Transactions on Systems, 13, 460-469.
  3. Soni, J., Ansari, U., Sharma, D., & Soni, S. (2011). Predictive data mining for medical diagnosis: An overview of heart disease prediction. International Journal of Computer Applications, 17(8), 43-48.
  4. Durairaj, M., & Ranjani, V. (2013). Data mining applications in healthcare sector a study. International Journal of Scientific and Technology Research, 2(10), 29-35.
  5. Ahmad, M. A. B. (2013). Mining Health Data for Breast Cancer Diagnosis Using Machine Learning.
  6. Task Force of the European Society of Cardiology. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J, 17, 354-381.
  7. Stein, P. K., Bosner, M. S., Kleiger, R. E., & Conger, B. M. (1994). Heart rate variability: a measure of cardiac autonomic tone. American heart journal, 127(5), 1376-1381.
  8. Xu, Y. Recent Machine Learning Applications to Internet of Things (IoT).
  9. Masethe, H. D., & Masethe, M. A. (2014, October). Prediction of heart disease using classification algorithms. In Proceedings of the world congress on engineering and computer science (Vol. 2, pp. 22-24).
  10. Jothi, N., & Husain, W. (2015). Data Mining in Healthcare–A Review. Procedia Computer Science, 72, 306-313.
  11. Kraft, M. R., Desouza, K. C., & Androwich, I. (2003, January). Data mining in healthcare information systems: case study of a veterans' administration spinal cord injury population. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on (pp. 9-pp). IEEE.
  12. Banaee, H., Ahmed, M. U., & Loutfi, A. (2013). Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors, 13(12), 17472-17500.
  13. Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54(15), 2688-2710.
  14. Al Ameen, M., Liu, J., & Kwak, K. (2012). Security and privacy issues in wireless sensor networks for healthcare applications. Journal of medical systems, 36(1), 93-101.
  15. Rose, K., Eldridge, S., & Chapin, L. (2015). The internet of things: An overview. The Internet Society (ISOC), 1-50.
  16. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., ... & Huffman, M. D. (2015). Executive summary: heart disease and stroke statistics—2015 update. Circulation, 131(4), 434-441.
  17. Canto, J. G., & Iskandrian, A. E. (2003). Major risk factors for cardiovascular disease: debunking the only 50% myth. Jama, 290(7), 947-949.
Index Terms

Computer Science
Information Sciences

Keywords

Internet of Things heart attract machine learning k nearest neighbour