We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Multilevel Segmentation of Fundus Images using Dragonfly Optimization

by S. Rakoth Kandan, J. Sasikala
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 164 - Number 4
Year of Publication: 2017
Authors: S. Rakoth Kandan, J. Sasikala
10.5120/ijca2017913616

S. Rakoth Kandan, J. Sasikala . Multilevel Segmentation of Fundus Images using Dragonfly Optimization. International Journal of Computer Applications. 164, 4 ( Apr 2017), 28-32. DOI=10.5120/ijca2017913616

@article{ 10.5120/ijca2017913616,
author = { S. Rakoth Kandan, J. Sasikala },
title = { Multilevel Segmentation of Fundus Images using Dragonfly Optimization },
journal = { International Journal of Computer Applications },
issue_date = { Apr 2017 },
volume = { 164 },
number = { 4 },
month = { Apr },
year = { 2017 },
issn = { 0975-8887 },
pages = { 28-32 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume164/number4/27472-2017913616/ },
doi = { 10.5120/ijca2017913616 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:10:22.561854+05:30
%A S. Rakoth Kandan
%A J. Sasikala
%T Multilevel Segmentation of Fundus Images using Dragonfly Optimization
%J International Journal of Computer Applications
%@ 0975-8887
%V 164
%N 4
%P 28-32
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a self adaptive dragonfly optimization (DFO) based methodology for performing multilevel segmentation of colour fundus images. The multilevel segmentation problem is formulated as an optimization problem and solved using the DFO. The method optimizes the threshold values for each of the three chromatic channels of colour fundus images through effectively exploring the solution space in obtaining the global best solution. The results of two fundus images illustrate the performance of the developed method.

References
  1. Hill, Robert Buzz. (1999). “Retina Identification” from the Book: Biometrics: Personal Identification in Networked Society, 1st edn. Springer, Berlin.
  2. T. Chui, M. Dubow, A. Pinhas, N. Shah, A. Gan, R. Weitz, Y. Sulai, A. Dubra, R. Rosen. (2014). Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging, Biomed. Opt. Express, 5(4): 1173–1189.
  3. N. Patton, T. Aslam, T. MacGillivray, A. Pattie, I. J. Deary, B. Dhillon. (2005). Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures, J Anat., 206: 319–348.
  4. M. Potchen, S. Kampondeni, K. Seydel, G. Birbeck, C. Hammond, W. Bradley. (2012). Acute brain mri findings in 120 malawian children with cerebral malaria: new insights into an ancient disease, Am. J Neuroradiol., 33: 1740–1746.
  5. S. Philip, AD. Fleming, KA. Goatman, S. Fonseca, P. Mcnamee, GS. Scotland, GJ. Prescott, PF. Sharp, J.A. Olson. (2007). The efficacy of automated disease/nodisease grading for diabetic retinopathy in a systematic screeningprogramme, Br. J. Ophthalmol., 91: 1512–1517.
  6. Daniel E. Singer, David M. Nathan, Howard A. Fogel, and Andrew P. Schachat. (1992). Screening for diabetic retinopathy, Annals of Internal Medicine, 116(8): 660–671.
  7. D. Welfer, J. Scharcanski, D.R. Marinho. (2010). A coarse-to-fine strategy forautomatically detecting exudates in color eye fundus images, Comput. Med.Imaging Graph, 34: 228–235.
  8. S. Ali, D. Sidibé, K.M. Adal, L. Giancardo, E. Chaum, T.P. Karnowski, F.Mériaudeau. (2013). Statistical atlas based exudate segmentation, Comput. Med.Imaging Graph, 37: 358–368.
  9. B. Harangi, A. Hajdu. (2014). Automatic exudate detection by fusing multiple active contours and regionwise classification, Comput. Biol. Med., 54: 156-171.
  10. Kavitha, D., Shenbaga Devi, S. (2005). Automatic detection of optic disc and exudates in retinal images, in: Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 501–506.
  11. Foracchia, M., Grisan, E., Ruggeri, A. (2004). Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Transactions on Medical Imaging, 23: 1189–1195.
  12. Madhusudhan M., Malay N., Nirmala S.R., Samerendra D. (2011) Image Processing Techniques for Glaucoma Detection. In: Abraham A., Mauri J.L., Buford J.F., Suzuki J., Thampi S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, Springer, Berlin, Heidelberg, 192: 365–373.
  13. Guo Dong, and Ming Xie. (2005). Color Clustering and Learning for Image Segmentation Based on Neural Networks, IEEE Trans on Neural Networks, 16(4): 925-935.
  14. Tahir Sag and Mehmet Cunkas. (2015). Color image segmentation based on multiobjective artificial bee colony optimization, Applied Soft Computing, 34(C): 389-401.
  15. Seyedali Mirjalili. (2015). Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete and multi-objective problems, Neural Comput and Applic. DOI. 10.1007/s00521-015-1920-1.
  16. Rakoth Kandan Sambandam, Sasikala Jayaraman. (2016). Self-Adaptive Dragonfly Based Optimal Thresholding for Multilevel Segmentation of Digital Images, Journal of King Saud University - Computer and Information Sciences, DOI: http://dx.doi.org/10.1016/j.jksuci.2016.11.002.
Index Terms

Computer Science
Information Sciences

Keywords

fundus images multilevel segmentation.