CFP last date
20 February 2025
Reseach Article

Fuzzy g* Pre- Continuous Maps in Fuzzy Topological Spaces

by S. S. Benchalli, G. P. Siddapur
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 16 - Number 2
Year of Publication: 2011
Authors: S. S. Benchalli, G. P. Siddapur
10.5120/1986-2675

S. S. Benchalli, G. P. Siddapur . Fuzzy g* Pre- Continuous Maps in Fuzzy Topological Spaces. International Journal of Computer Applications. 16, 2 ( February 2011), 12-15. DOI=10.5120/1986-2675

@article{ 10.5120/1986-2675,
author = { S. S. Benchalli, G. P. Siddapur },
title = { Fuzzy g* Pre- Continuous Maps in Fuzzy Topological Spaces },
journal = { International Journal of Computer Applications },
issue_date = { February 2011 },
volume = { 16 },
number = { 2 },
month = { February },
year = { 2011 },
issn = { 0975-8887 },
pages = { 12-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume16/number2/1986-2675/ },
doi = { 10.5120/1986-2675 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:04:26.266881+05:30
%A S. S. Benchalli
%A G. P. Siddapur
%T Fuzzy g* Pre- Continuous Maps in Fuzzy Topological Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 16
%N 2
%P 12-15
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A new form of fuzzy g*p-continuous, fuzzy g*p-irresolute mappings, fuzzy g*p-closed maps and fuzzy g*p-open maps in fuzzy topological spaces are introduced and their properties have been investigated. As an application of these mappings Tp-spaces,gp-homeomorphism are introduced and investigated.

References
  1. K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Apl. 82(1981), 14-32.
  2. G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous, Fuzzy Sets and Systems, 86 (1997), 93-100.
  3. A. S. Bin Shahna, on fuzzy strong continuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44 (1991), 303-308.
  4. C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl. (1968), 182-190.
  5. M.Ferraro and D.H.Foster, Differentiation of fuzzy continuous mappings on fuzzy topological spaces. Jl. Math. Anal. Appl. 121 (1987), 589-601.
  6. T.Fukutake, R.K.Saraf, M.Caldas and S.Mishra, Mappings via Fgp-closed sets, Bull. of Fukuoka Univ. of Edu. Vol. 52, Part III (2003), 11-20.
  7. N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (2) (1970), 89-96.
  8. S.R.Malghan and S.S.Benchalli, Open maps, closed maps and Local compactness in Fuzzy topological spaces, Jl. Math. Anal. Appl. 99 No. 2 (1984), 74-79.
  9. M.N.Mukherjee and B.Ghosh, Some stronger forms of fuzzy continuous mappings on fuzzy topological spaces, Fuzzy Sets and Systems, 38 (1990), 375-387.
  10. A.Pushpalatha, Studies on generalizations of mappings in topological spaces, Ph.D Thesis, Bharathiar University Combatorw, (2000).
  11. S.S.Thankar and Surendra Singh, On fuzzy semi- preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems, 98 (1998), 383-391.
  12. M.K.R.S.Veerakumar, g#-semi-closed sets in topology, Acta ciencia Indica, Vol. xxix M, No.1, 081 (2002).
  13. L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353. projects”, in Software IEEE , ISSN : 0740-7459 , Digital Object Identifier : 10.1109/52.877874, PP 96 – 101.
Index Terms

Computer Science
Information Sciences

Keywords

g*p-closed fuzzy sets fuzzy g*p-continuous fuzzy g*p-irresolute mappings fuzzy g*p-closed maps fuzzy g*p-open maps