CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

On Fuzzy Bi-Level Multi-Objective Large Scale Integer Quadratic Programming Problem

by O. E. Emam, E. Fathy, A. A. Abdullah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 159 - Number 2
Year of Publication: 2017
Authors: O. E. Emam, E. Fathy, A. A. Abdullah
10.5120/ijca2017912878

O. E. Emam, E. Fathy, A. A. Abdullah . On Fuzzy Bi-Level Multi-Objective Large Scale Integer Quadratic Programming Problem. International Journal of Computer Applications. 159, 2 ( Feb 2017), 28-33. DOI=10.5120/ijca2017912878

@article{ 10.5120/ijca2017912878,
author = { O. E. Emam, E. Fathy, A. A. Abdullah },
title = { On Fuzzy Bi-Level Multi-Objective Large Scale Integer Quadratic Programming Problem },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2017 },
volume = { 159 },
number = { 2 },
month = { Feb },
year = { 2017 },
issn = { 0975-8887 },
pages = { 28-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume159/number2/26975-2017912878/ },
doi = { 10.5120/ijca2017912878 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:04:40.777003+05:30
%A O. E. Emam
%A E. Fathy
%A A. A. Abdullah
%T On Fuzzy Bi-Level Multi-Objective Large Scale Integer Quadratic Programming Problem
%J International Journal of Computer Applications
%@ 0975-8887
%V 159
%N 2
%P 28-33
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The motivation behind this paper is to focus on the solution of a Bi-Level Multi-Objective Large Scale Integer Quadratic Programming (BLMOLSIQP) problem in which all decision parameters in the objective functions are symmetric trapezoidal fuzzy numbers, and has block angular structure of the constraints. The suggested algorithm based on a linear ranking function, weight method, Taylor’s series, decomposition algorithm and branch and bound method is to find a compromised solution for the problem under consideration. In addition, the theoretical results are illustrated with the help of a numerical example.

References
  1. T.H.M.Abou-El-Enien, “On the Solution of a Special Type of Large Scale Integer Linear Vector Optimization Problems with Uncertain Data through TOPSIS Approach”, International Journal of Contemporary Mathematical Sciences, 6 (2011) 657 – 669.
  2. S. Barkha, and D. Rajendra, “Optimum Solution of Fuzzy Linear Programming Problem for Trapezoidal Number”, VSRD-TNTJ, 3 (7) (2012) 268-276.
  3. N. Mahdavi , and S. H. Nasseri, “Duality in Fuzzy Number Linear Programming by Use of a Certain Linear Ranking Function”, Applied Mathematics and Computation, 180 (2006) 206-216.
  4. S. H. Nasseri, E. Adril, A.Yazdani, and R.Zaefarian, “Simplex Method for Solving Linear Programming Problems with Fuzzy Numbers”, World Academy of Science , Engineering and Technology, 10.(2005), 285-288.
  5. E. A. Youness, O. E. Emam, and M. S. Hafez, “Simplex Method for Solving Bi-Level Linear Fractiopnal Integer Programming Problems with Fuzzy Numbers”, International Journal of Mathematical Sciences and Engineering Applications. 3 (2013) 351-363.
  6. E. A. Youness, O. E. Emam, M. S. Hafez, “Bi-Level Multi-Objective Fractional Integer Programming”, Applied Mathematics & Information,6 (2014) 2857-2863.
  7. T. I. Sultan, O. E. Emam and A. A. Abohany, "A Decomposition Algorithm for Solving a Three–level Large Scale Linear Programming Problem", Applied Mathematics and Information Science, 5 (2014) 2217-2223.
  8. M. A. Abo-Sinna and T. H. M. Abou-El-Enien, "An Interactive Algorithm for Large Scale Multiple Objective Programming Problems with Fuzzy Parameters Through Topsis Approach", Yugoslav Journal of Operations Research, 21 (2011) 253-273.
  9. G. Dantzig and P. Wolfe, "The Decomposition Algorithm for Linear Programming", Econometric, 9(4) (1961) 767–778.
  10. H. T. Taha, "Operation Research-An Introduction", 6th Edition, Mac Milan Publishing Co, New York, 1997.
  11. O. Emam, S. Kholeif and S. Azzam, “A decomposition Algorithm for Solving Stochastic Multi-Level Large Scale Quadratic Programming Problem”, Applied Mathematics & Information Sciences, 9(4), (2015).
  12. O.E. Emam, “A Fuzzy Approach for Bi-Level Integer Nonlinear Programming Problem”, Applied Mathematics and Computation, 172 (2006) 62–71.
  13. O.E. Emam, “Interactive Approach to Bi-Level Integer Multi-Objective Fractional Programming Problem”, Applied Mathematics and Computation, 233 (2013) 17-24.
  14. I.A. Baky, “Solving Multi-Level Multi-Objective Linear Programming Problems Through Fuzzy Goal Programming Approach”, Applied Mathematical Modeling, 34 (2010) 2377-2387.
  15. M. A. Abo-Sinna and T.H.M.Abou-El-Enien, “An Interactive Algorithm for Large Scale Multiple objective Programming Problems with Fuzzy Parameters through TOPSIS approach”, Applied Mathematics and Computation, 177 (2006)515-527.
  16. M.S. Osman, O.M. Saad, and A.G. Hasan , “Solving Special Class of Large Scale Fuzzy Multi Objective Integer Linear Programming Problems”, Fuzzy Sets and Systems, 107 (1999) 289-297.
  17. O. E. Emam, E. Fathy and A. A. Abohany, “An Interactive Model for Fully Rough Three Level Large Scale Integer Linear Programming Problem”, International Journal of Computer Applications, 155 (11) (2016) 1-12.
  18. O. E. Emam, E. Fathy and M. A. Helmy, “Fully Fuzzy Multi-Level Linear Programming Problem”, International Journal of Computer Applications 155 (7) (2016) 18-26.
  19. O. M. Saad, T. R. Mohamed, M. K. Alshafae, E. F. Abdellah, “Taylor Series Approach for Solving Chance-Constrain Multi Objective Integer Linear Fractional Programming Problem”, International Journal of Mathematical Archive, 3 (2012) 18 – 23.
Index Terms

Computer Science
Information Sciences

Keywords

Large Scale Integer Programming Quadratic Programming Multi-Objective Fuzzy Programming Bi-level programming. MSC 2010: 90C06 90C10 90C20 90C29 90C70 90C99..