We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Fully Fuzzy Multi-Level Linear Programming Problem

by O. E. Emam, E. Fathy, M. A. Helmy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 155 - Number 7
Year of Publication: 2016
Authors: O. E. Emam, E. Fathy, M. A. Helmy
10.5120/ijca2016912287

O. E. Emam, E. Fathy, M. A. Helmy . Fully Fuzzy Multi-Level Linear Programming Problem. International Journal of Computer Applications. 155, 7 ( Dec 2016), 18-26. DOI=10.5120/ijca2016912287

@article{ 10.5120/ijca2016912287,
author = { O. E. Emam, E. Fathy, M. A. Helmy },
title = { Fully Fuzzy Multi-Level Linear Programming Problem },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2016 },
volume = { 155 },
number = { 7 },
month = { Dec },
year = { 2016 },
issn = { 0975-8887 },
pages = { 18-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume155/number7/26616-2016912287/ },
doi = { 10.5120/ijca2016912287 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:00:38.164836+05:30
%A O. E. Emam
%A E. Fathy
%A M. A. Helmy
%T Fully Fuzzy Multi-Level Linear Programming Problem
%J International Journal of Computer Applications
%@ 0975-8887
%V 155
%N 7
%P 18-26
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper focuses on the solution of fully fuzzy multi-level linear programming (FFMLLP) Problem, where all of its decision parameters and variables are fuzzy numbers. An algorithm depending on the fuzzy decision approach and bound and decomposition method will be developed to find a fuzzy optimal solution for the problem under consideration. The main results obtained in this paper will be clarified by an illustrative numerical example.

References
  1. H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems. 1 (1978) 45-55.
  2. H. M. Nehi and H. HajMohamadi, A ranking function method for solving fuzzy multi-objective linear programming problem, Annals of Fuzzy Mathematics and Informatics. 3 (2012) 31-38.
  3. H. Tanaka and K. Asai, Fuzzy linear programming problems with fuzzy numbers, Fuzzy Sets and Systems. 13 (1984) 1-10.
  4. Y. Zhong, Y. Jia, D. Chen, and Y. Yang, Interior point method for solving fuzzy number linear programming problems using linear ranking function, Journal of Applied mathematics. (2013), Article ID 795098, 9 pages.
  5. S. H. Nasseri, E. Behmanesh, F. Taleshian, M. Abdolalipoor, N. A. Taghi-Nezhad, Fully fuzzy linear programming with inequality constraints, International Journal of Industrial Mathematics. 5 (2013) 309-316.
  6. R. Ezzati, E. Khorram, and R. Enayati, A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem, Applied Mathematical Modeling. 39 (2015) 3183–3193.
  7. B. Bhardwaj and A. Kumar, A note on ‘a new algorithm to solve fully fuzzy linear programming problems using the MOLP problem’, Applied Mathematical Modeling. 39 (2015) 5982–5985.
  8. P. Pandian, Multi-objective programming approach for fuzzy linear programming problems, Applied Mathematical Sciences. 37 ( 2013) 1811-1817.
  9. M. Jayalakshmi and P. Pandian, A new method for finding an optimal fuzzy solution for fully fuzzy linear programming problems, I. J. of Engineering Research and Applications. 2 ( 2012) 247-254.
  10. H. Zaher, N. Saeid and A. Serag, Fuzzy approach for three level linear programming problems, International Journal of Computer Applications. 133 (2016) 30-34.
  11. L. Zhang, A fuzzy algorithm for solving a class of bi level linear programming problem, Appl. Math. Inf. Sci. 8 (2014) 1823-1828.
  12. M.S. Osman, M.A. Abo-Sinna, A. H. Amer and O. E. Emam, A multi-level non-linear multi-objective under fuzziness, Applied Mathematics and Computations.153 (2004) 239-252.
  13. O. M. Saad and M. S. Hafez, An algorithm for solving bi-level integer linear fractional programming problem based on fuzzy approach", General Mathematics Notes. 3 (2011) 86-99.
  14. O. M. Saad and O. E. Emam, Taylor series approach for solving chance-constrained bi-level integer linear fractional programming problem, International Journal of Mathematical Archive. 2 (2011) 1-6.
  15. E. A. Youness, O. E. Emam and M. S. Hafez, Fuzzy bi-level multi-objective fractional integer programming, Appl. Math. and Inf. Sci. 8 (2014) 2875-2863.
  16. S. S. Hsu, Y. J. Lai, L. E. Stanley, Fuzzy approach for multi-level programming problems, Computers and Operation Research. 32 (1996) 73-91.
  17. S. S. Hsu, Y. J. Lai, L. E. Stanley, Fuzzy and multi-level decision making, Springer- Verlag Ltd, London. (2001).
  18. M. Sakawa, Fuzzy sets and interactive multi-objective optimization, Plenum Press, New York. (1993).
  19. M. A. Abo-Sinna, A bi-level non-linear multi-objective decision-making under fuzziness, Journal of Operational Research Society (OPSEARCH). 38 (2001) 484-495.
Index Terms

Computer Science
Information Sciences

Keywords

Multi-level programming Fuzzy decision approach Bound and decomposition method Fuzzy linear programming.