CFP last date
20 January 2025
Reseach Article

Approximations of Stochastic Nets by Mean of Continuous Petri Nets

by Nabil El Akchioui, Souâd Choukrad
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 155 - Number 4
Year of Publication: 2016
Authors: Nabil El Akchioui, Souâd Choukrad
10.5120/ijca2016912292

Nabil El Akchioui, Souâd Choukrad . Approximations of Stochastic Nets by Mean of Continuous Petri Nets. International Journal of Computer Applications. 155, 4 ( Dec 2016), 26-31. DOI=10.5120/ijca2016912292

@article{ 10.5120/ijca2016912292,
author = { Nabil El Akchioui, Souâd Choukrad },
title = { Approximations of Stochastic Nets by Mean of Continuous Petri Nets },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2016 },
volume = { 155 },
number = { 4 },
month = { Dec },
year = { 2016 },
issn = { 0975-8887 },
pages = { 26-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume155/number4/26594-2016912292/ },
doi = { 10.5120/ijca2016912292 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:00:23.386279+05:30
%A Nabil El Akchioui
%A Souâd Choukrad
%T Approximations of Stochastic Nets by Mean of Continuous Petri Nets
%J International Journal of Computer Applications
%@ 0975-8887
%V 155
%N 4
%P 26-31
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Reliability analysis is often based on stochastic discrete event models like Markov models or stochastic Petri nets. For complex dynamical systems with numerous components, analytical expressions of the steady state are tedious to work out because of the combinatory explosion with discrete models. The contribution of this paper is to approximate the steady state of mono T-semiflow stochastic nets by mean of continuous Petri nets according to a modification of the maximal firing speed vector definition. This result is then used to accelerate convergence of stochastic simulations.

References
  1. M. Ajmone Marsan, G. Chiola, On Petri nets with deterministic and exponentially distributed firing times, Advances in Petri nets (Rozenberg G.), Springer Verlag, (1987) pp. 132-145.
  2. M.K. Molloy, Performance analysis using stochastic Petri nets, IEEE Tran. Comp. C, 31, (1982) pp. 913 – 917.
  3. R. David, H. Alla, Petri nets and grafcet – tools for modelling discrete events systems, Prentice Hall, London (1992).
  4. J. Julvez, L. Recalde, M. Silva, Steady-state performance evaluation of continuous mono-T-semiflow Petri nets, Automatica, 41 (4), (2005) pp. 605-616.
  5. M. Rausand, A. Hoyland, System reliability theory: models, statistical methods, and applications, Wiley, Hoboken, New Jersey, (2004).
  6. Zaitsev, Dmitry (2013). Clans of Petri Nets: Verification of protocols and performance evaluation of networks. LAP LAMBERT Academic Publishing. ISBN 978-3-659-42228-7.
  7. Vazquez R., Silva M., Hybrid approximations of markovian Petri nets, Proc. IFAC Conference on Analysis and Design of hybrid Systems, (2009) Zaragoza, Spain.
  8. Kara R., Loiseau J.J., Djennoune S. (2008) Quantitative analysis of continuous weighted marked graphs, Nonlinear Analysis: Hybrid Systems, Vol. 2, pp. 1010_1020.
  9. Mahulea C., Ramirez Trevino A., Recalde L., Silva M., (2008), Steady state control reference and token conservation laws in continuous Petri nets, Trans. IEEE – TASE, Vol. 5, no. 2, pp. 307 – 320.
  10. Bobbio, A. Puliafito, M. Telek, K. Trivedi, Recent Developments in Stochastic Petri Nets, J. of Cir., Syst., and Comp., 8 (1), (1998) pp. 119-158.
  11. L. Recalde, E. Teruel, M. Silva, Autonomous continuous P/T systems, Lecture notes in computer science, vol. 1639, (1999) pp 107 – 126.
  12. D. Lefebvre, E. Leclercq, N. El Akchioui, L. Khalij, E. Souza de Cursi, A geometric approach for the homothetic approximation of stochastic Petri nets, Proc. IFAC WODES, (2010) Berlin, Germany.
  13. Diaz M., (2001) Les réseaux de Petri : modèles fondamentaux, Hermes, Paris.
  14. R. Vazquez, L. Recalde, M. Silva, Stochastic continuous-state approximation of markovian Petri net systems, Proc. IEEE – CDC08, (2008) pp. 901 – 906, Cancun, Mexico.
  15. L. Recalde, M. Silva, Petri nets and integrality relaxations: a view of continuous Petri nets, Trans. IEEE – SMC, part C, 32(4), (2002) pp. 314-326.
  16. D. Lefebvre, About the stochastic and continuous Petri nets equivalence in long run, Non-Linear Analysis, Hybrid Systems (NAHS), vol.5, pp. 394-406, 2011.
  17. Mahulea C., Giua A., Recalde L., Seatzu C., Silva M., (2006), On sampling continuous timed Petri nets: reachability “equivalence” under infinite servers semantics, Proceeding IFAC - ADHS, pp. 37 – 43. Alghero, Italy.
  18. Demongodin I., Giua A., (2002) Some time analysis methods for continuous and hybrid Petri nets, IFAC World Congress, Barcelona, Spain.
  19. D. Lefebvre, E. Leclercq, L. Khalij, E. Souza de Cursi, N. El Akchioui, Approximation of MTS stochastic Petri nets steady state by means of continuous Petri nets: a numerical approach, Proc. IFAC ADHS, (2009) pp. 62-67, Zaragoza, Spain.
  20. L. Recalde, M. Silva, On fluidification of Petri Nets: from discrete to hybrid and continuous models, An. Reviews in Control, 28(2), (2004) pp. 253-266.
Index Terms

Computer Science
Information Sciences

Keywords

Stochastic Petri nets continuous Petri nets steady state reliability analysis.