CFP last date
20 January 2025
Reseach Article

A Comparative Study of Various Classifiers for Character Recognition on Multi-script Databases

by Jamimamul Bakas, Mahabub H. Mahalat, Ayatullah F. Mollah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 155 - Number 3
Year of Publication: 2016
Authors: Jamimamul Bakas, Mahabub H. Mahalat, Ayatullah F. Mollah
10.5120/ijca2016912277

Jamimamul Bakas, Mahabub H. Mahalat, Ayatullah F. Mollah . A Comparative Study of Various Classifiers for Character Recognition on Multi-script Databases. International Journal of Computer Applications. 155, 3 ( Dec 2016), 1-5. DOI=10.5120/ijca2016912277

@article{ 10.5120/ijca2016912277,
author = { Jamimamul Bakas, Mahabub H. Mahalat, Ayatullah F. Mollah },
title = { A Comparative Study of Various Classifiers for Character Recognition on Multi-script Databases },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2016 },
volume = { 155 },
number = { 3 },
month = { Dec },
year = { 2016 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume155/number3/26582-2016912277/ },
doi = { 10.5120/ijca2016912277 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:00:15.085409+05:30
%A Jamimamul Bakas
%A Mahabub H. Mahalat
%A Ayatullah F. Mollah
%T A Comparative Study of Various Classifiers for Character Recognition on Multi-script Databases
%J International Journal of Computer Applications
%@ 0975-8887
%V 155
%N 3
%P 1-5
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Classification through learning from examples is extensively applied to character recognition from last three decades. Considerable improvements in terms of classification accuracies have been made using various classification methods. But, comparison of various classifiers for the same character dataset research is not exhaustive. This paper investigates the recognition performance of support vector machine (SVM) with various kernels, multi-layer perceptron (MLP), k-nearest neighbors (kNN), naive Bayes and minimum distance classifiers for character recognition on multi-script databases viz. Arabic, Oriya and Bengali. It is found that MLP performed the best for Oriya (95.20%) and Bengali (95.10%) datasets, and SVM with radial basis function (RBF) kernel performs the best for Arabic (96.70%) dataset. Among other classifiers, kNN is giving relatively better results. In all cases, minimum distance classifier gives the worst performance. In total, MLP followed by SVM RBF kernel is found to be the most efficient among all classifiers included in this study.

References
  1. S. Arora, D. Bhattacharjee, M. Nasipuri, L. Malik, M. Kundu and D. K. Basu, “Performance Comparison of SVM and ANN for Handwritten Devnagari Character Recognition”, Int. J. of Computer Science Issues, vol. 7, no. 3, pp. 18-26.
  2. E. A. Zanaty, “Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification”, Egyptian Informatics Journal (2012) 13, 177183.
  3. U. Pal, T. Wakabayashi, F. Kimura, “Comparative Study of Devnagari Handwritten Character Recognition using Different Feature and Classifiers”, Proc. 10th International Conference on Document Analysis and Recognition, pp. 1111-1115, 2009.
  4. K. Mohiuddin and Jianchang Mao. “A comparative study of different classifiers for handprinted character recognition”, Pattern Recognition in Practice IV (2014): 437-448.
  5. D. Chen and J. M. Odobez “Comparison of Support Vector Machine and Neural Network for Text Texture Verification”, IDIAP, 2002.
  6. P. K. Singh, R. Sarkar, N. Das, S. Basu and M. Nasipuri, “Statistical comparison of classifiers for script identification from multi-script handwritten documents”. International Journal of Applied Pattern Recognition, 1(2), pp.152-172, 2014.
  7. A. Patil and V. Attar, “Framework for performance comparison of classifiers”, In Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011), December 20-22, pp. 681-689, Springer India, 2012.
  8. H. H. Avils-Arriaga, L. E. Sucar-Succar, C. E. Mendoza-Durn and L. A. Pineda-Corts, “A comparison of dynamic naive bayesian classifiers and hidden markov models for gesture recognition”, Journal of Applied Research and Technology, 9(1), pp. 81-102, 2011.
  9. S. Alghowinem, R. Goecke, M. Wagner, J. Epps, T. Gedeon, M. Breakspear and G. Parker, “A comparative study of different classifiers for detecting depression from spontaneous speech”, Proc.of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8022-8026, 2013.
  10. W. Adler, A. Peters and B. Lausen, “Comparison of classifiers applied to confocal scanning laser ophthalmoscopy data”, Methods of Information in Medicine, 47(1), 38-46, 2008.
  11. G. I. Salama, M. B. Abdelhalim and M. A. E. Zeid, “Experimental comparison of classifiers for breast cancer diagnosis”, Proc. of Seventh International Conference on Computer Engineering and Systems (ICCES), pp. 180-185, IEEE, 2012.
  12. B. Remeseiro, M. Penas, A. Mosquera, J. Novo, M. G. Penedo and E. Yebra-Pimentel, “Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification”, Computational and Mathematical Methods in Medicine, 2012.
  13. R. S. Dwivedi, S. Kandrika, and K. V. Ramana, “Comparison of classifiers of remote-sensing data for land-use/land-cover mapping”, Current Science, 86(2), 328-334, 2004.
  14. I. Shafran and M. Mohri, “A Comparison of Classifiers for Detecting Emotion from Speech”, Proc. of ICASSP, pp. 341- 344, 2005.
  15. N. Nai-arun, and R. Moungmai, “Comparison of Classifiers for the Risk of Diabetes Prediction”, Procedia Computer Science, 69, 132-142, 2015.
  16. P. Aggarwal and S. K. Sharma, “An empirical comparison of classifiers to analyze intrusion detection”, In Fifth International Conference on Advanced Computing and Communication Technologies, pp. 446-450, IEEE, 2015.
  17. P. M. Barnaghi, V. A. Sahzabi, A. A. Bakar, “A comparative study for various methods of classification”, In International Conference on Information and Computer Networks, vol. 27, no. 2, pp. 875-81, 2012.
  18. D. R. Amancio, C. H. Comin, D. Casanova, G. Travieso, O. M. Bruno, F. A. Rodrigues, L. da Fontoura Costa, “A systematic comparison of supervised classifiers”, PloS one, 9(4), e94137, 2014.
  19. S.Basu, N.Das, R.Sarkar, M.Kundu, M.Nasipuri, D.K.Basu, “Handwritten Bangla Alphabet recognition using an MLP based classifier”, NCCPB-2005, Bangladesh, pp.285-291.
  20. Ben Aisen “A Comparison of Multiclass SVM Methods”, December 15, 2006.
Index Terms

Computer Science
Information Sciences

Keywords

Bayes Classifier Minimum Distance K-Nearest Neighbors Multi Layer Perceptron Support Vector Machine Linear Kernel Quadratic Kernel Polynomial Kernel Radial Basis Function Kernel Comparative Study