CFP last date
20 December 2024
Reseach Article

An Interactive Model for Fully Rough Three Level Large Scale Integer Linear Programming Problem

by O. E. Emam, E. Fathy, A. A. Abohany
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 155 - Number 12
Year of Publication: 2016
Authors: O. E. Emam, E. Fathy, A. A. Abohany
10.5120/ijca2016912494

O. E. Emam, E. Fathy, A. A. Abohany . An Interactive Model for Fully Rough Three Level Large Scale Integer Linear Programming Problem. International Journal of Computer Applications. 155, 12 ( Dec 2016), 1-12. DOI=10.5120/ijca2016912494

@article{ 10.5120/ijca2016912494,
author = { O. E. Emam, E. Fathy, A. A. Abohany },
title = { An Interactive Model for Fully Rough Three Level Large Scale Integer Linear Programming Problem },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2016 },
volume = { 155 },
number = { 12 },
month = { Dec },
year = { 2016 },
issn = { 0975-8887 },
pages = { 1-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume155/number12/26654-2016912494/ },
doi = { 10.5120/ijca2016912494 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:01:02.904187+05:30
%A O. E. Emam
%A E. Fathy
%A A. A. Abohany
%T An Interactive Model for Fully Rough Three Level Large Scale Integer Linear Programming Problem
%J International Journal of Computer Applications
%@ 0975-8887
%V 155
%N 12
%P 1-12
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The motivation behind this paper is to focus on the solution of Fully Rough Three Level Large Scale Integer Linear Programming (FRTLLSILP) problem, in which all decision parameters and decision variables in the objective functions and the constraints are rough intervals, and have block angular structure of the constraints. The optimal values of decision rough variables are rough integer intervals. The proposed model is based on interval method and slice-sum method in an interactive model to find a compromised solution for the problem under consideration. Furthermore, the concepts of satisfactoriness are advanced as the upper level decision-makers' preferences until the preferred solution is obtained.

References
  1. Z. Pawlak, "Rough Sets", International Journal of Computer and Information Sciences, 11 (1982) 341-356.
  2. J. Nasiri and M. Mashinchi, "Rough Set and Data Analysis in Decision Tables", Journal of Uncertain Systems, 3(3) (2009) 232–240.
  3. H. Zaher, N. Saeid and A. Serag, "Fuzzy Approach for Three Level Linear Programming Problems", International Journal of Computer Applications, 133 (16) (2016) 30-34.
  4. S. Pramanik, D. Banerjee and B. C. Giri, "Chance Constrained Multi-Level Linear Programming Problem", International Journal of Computer Applications, 120 (18) (2015) 1-6.
  5. K. Lachhwani, "On Solving Multi-Level Multi Objective Linear Programming Problems Through Fuzzy Goal Programming Approach", OPSEARCH, 51 (4) (2014) 624–637.
  6. T. I. Sultan, O. E. Emam and A. A. Abohany, "A Decomposition Algorithm for Solving a Three–level Large Scale Linear Programming Problem", Applied Mathematics and Information Science, 5 (2014) 2217-2223.
  7. M. A. Abo-Sinna and T. H. M. Abou-El-Enien, "An Interactive Algorithm for Large Scale Multiple Objective Programming Problems with Fuzzy Parameters Through Topsis Approach", Yugoslav Journal of Operations Research, 21 (2011) 253-273.
  8. G. Dantzig and P. Wolfe, "The Decomposition Algorithm for Linear Programming", Econometric, 9(4) (1961) 767–778.
  9. H. T. Taha, "Operation Research-An Introduction", 6th Edition, Mac Milan Publishing Co, New York, 1997.
  10. O. E. Emam, "Interactive Approach to Bi-Level Integer Multi-Objective Fractional Programming Problem", Applied Mathematics and Computation, 223 (2013) 17–24.
  11. Y. Lai, "IMOST: Interactive Multiple Objective System Technique", Journal of the Operational Research Society, 46 (1995) 958-976.
  12. E. Youness, "Characterizing Solutions of Rough Programming Problems", European Journal of Operational Research, 168 (2006) 1019-1029.
  13. M. S. Osman, E. F. Lashein, E.A. Youness, and T. E. M. Attya, "Mathematical Programming in Rough Environment", A Journal of Mathematical Programming and Operations Research, 60 (5) (2011) 603-611.
  14. A. Hamazehee, M. A. Yaghoobi and M. Mashinchi, "Linear Programming with Rough Interval Coefficients", Journal of Intelligent and Fuzzy Systems, 26 (2014) 1179-1189.
  15. E. E. Ammar and A. M. Khalifa, "On Solving of Rough Interval Multiobjective Transportation Problems", Journal of Advances in Physics, 7 (2014) 1233-1244.
  16. M. S. Osman, M. M. El-Sherbiny, H. A. Khalifa and H. H. Farag, "A Fuzzy Technique for Solving Rough Interval Multiobjective Transportation Problem", International Journal of Computer Applications, 147 (10) (2016) 49-57.
  17. P. Pandian, G. Natarajan and A. Akilbasha, "Fully Rough Integer Interval Transportation Problems", International Journal of Pharmacy & Technology, 8 (2) (2016) 13866-13876.
Index Terms

Computer Science
Information Sciences

Keywords

Large Scale Problems Interval Method Slice-Sum Method Three–level Programming Decomposition Algorithm