CFP last date
20 January 2025
Reseach Article

Implementation of Multilayer Feed Forward Neural Network using VHDL

by Amitkumar B. Khonde, Yogesh Sharma, Sanjay Badjate
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 155 - Number 1
Year of Publication: 2016
Authors: Amitkumar B. Khonde, Yogesh Sharma, Sanjay Badjate
10.5120/ijca2016912111

Amitkumar B. Khonde, Yogesh Sharma, Sanjay Badjate . Implementation of Multilayer Feed Forward Neural Network using VHDL. International Journal of Computer Applications. 155, 1 ( Dec 2016), 31-33. DOI=10.5120/ijca2016912111

@article{ 10.5120/ijca2016912111,
author = { Amitkumar B. Khonde, Yogesh Sharma, Sanjay Badjate },
title = { Implementation of Multilayer Feed Forward Neural Network using VHDL },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2016 },
volume = { 155 },
number = { 1 },
month = { Dec },
year = { 2016 },
issn = { 0975-8887 },
pages = { 31-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume155/number1/26571-2016912111/ },
doi = { 10.5120/ijca2016912111 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:00:08.117306+05:30
%A Amitkumar B. Khonde
%A Yogesh Sharma
%A Sanjay Badjate
%T Implementation of Multilayer Feed Forward Neural Network using VHDL
%J International Journal of Computer Applications
%@ 0975-8887
%V 155
%N 1
%P 31-33
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper a hardware implementation of a neural network NN using Field Programmable Gate Arrays (FPGA) is presented. A digital system architecture is designed to realize a feed forward multilayer neural network. The designed architecture is described using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and implemented in an FPGA chip. The design is verified on an FPGA demo board Xilinx Spartan.

References
  1. . Philippe Dondon,v Julien Carvalho, Rémi Gardere, Paul Lahalle, Georgi Tsenov and Vale Mladeno “Implementation of a Feed-forward Artificial Neural Network in VHDL On FPGA ’’ Neural Network Application in Electrical Engineering (NEURAl) IEEE CONFERENCE 27 NOV 2014
  2. . Ravikant G. Biradar, Abhishek Chatterje, Prabhakar Mishra, Koshy George“FPGA Implementation of a Multilayer Artificial Neural Network using System-onChipDesign Methodogoly”. IEEE TRANSACTION 2015
  3. . Qiang Liu, Member, IEEE, Ming Gao, and Qijun Zhang, Fellow, IEEE “Knowledge-Based Neural Network Model for FPGA’’ IEEE Transction On VerLarge Scale Integration (VLSI) System 2015 IEEE Transaction p.p 1063-8210
  4. . Mr Prashant D. Deotale Prof. Lalit Dole “Design of FPGA Based General Purpose Neural Network ” ICICES2014
  5. . S.Hariprasath T.N.Prabakar “ FPGA Implementation of Multilayer Feed Forward Neural Network Architecture Using VHDL”
  6. . Suhap Sahin, Yasar Becerikli, and Suleyman Yazici “Neural Network Implementation in Hardware UsingFPGAs” pp. 1105Springer-Verlag Berlin Heidelberg 2006
  7. . Rafid Ahmed Khalil Sa'ad Ahmed Al-Kazzaz “Digital Hardware Implementation of Artificial Neurons Models Using FPGA”Department of Electrical Engineering University of Mosul, Mosul, Iraq
  8. . Haitham Kareem Ali and Esraa Zeki Mohammed “Design Artificial Neural Network Using FPGA” IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010
  9. . Ayman Youssef, Karim Mohammed, Amin Nassar “Reconfigurable, Generic and programmable Feed Forward Neural-Network implementation in FPGA”2012 14th International Conference on Modelling and Simulation978-0-7695-4682-7/12 2012 IEEE DOI 10.1109/UKSim.2012.12
  10. . S. Haykin, "Neural Networks: a comprehensive foundation", 2nd Edition, Prentice Hall, 1999.
  11. .S.Haykin, “Neural Networks”, Macmillan College Publishing Co. Inc.1994.
  12. Pravin Kshirsagar and Sudhir Akojwar, “Hybrid Heurictic Optimization for Benchmark Datasets”,IJCA,Vol 146-No.7,July 2016
Index Terms

Computer Science
Information Sciences

Keywords

FPGA VHDL NN.