CFP last date
20 December 2024
Reseach Article

Acoustic Characterization and Modeling of the Thickness of a Submerged Tube by ANFIS and the Artificial Neural Network

by Youssef Nahraoui, El Houcein Aassif, Gerard Maze
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 154 - Number 4
Year of Publication: 2016
Authors: Youssef Nahraoui, El Houcein Aassif, Gerard Maze
10.5120/ijca2016912120

Youssef Nahraoui, El Houcein Aassif, Gerard Maze . Acoustic Characterization and Modeling of the Thickness of a Submerged Tube by ANFIS and the Artificial Neural Network. International Journal of Computer Applications. 154, 4 ( Nov 2016), 37-43. DOI=10.5120/ijca2016912120

@article{ 10.5120/ijca2016912120,
author = { Youssef Nahraoui, El Houcein Aassif, Gerard Maze },
title = { Acoustic Characterization and Modeling of the Thickness of a Submerged Tube by ANFIS and the Artificial Neural Network },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2016 },
volume = { 154 },
number = { 4 },
month = { Nov },
year = { 2016 },
issn = { 0975-8887 },
pages = { 37-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume154/number4/26483-2016912120/ },
doi = { 10.5120/ijca2016912120 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:59:22.942840+05:30
%A Youssef Nahraoui
%A El Houcein Aassif
%A Gerard Maze
%T Acoustic Characterization and Modeling of the Thickness of a Submerged Tube by ANFIS and the Artificial Neural Network
%J International Journal of Computer Applications
%@ 0975-8887
%V 154
%N 4
%P 37-43
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Several theoretical and experimental studies have shown that the characterization of a target (tube,…) can be made from the cut-off frequencies of the anti-symmetric circumferential waves A1 propagating around the tube of various radius ratio b/a (a: outer radius and b: inner radius). This work investigates the abilities of Adaptive Neuro-fuzzy Inference System ANFIS and Artificial Neural Networks ANN to predict the thickness of a tube immersed in water for various cut-frequency of anti-symmetric circumferential wave A1. The useful data determinated from calculated trajectories of natural modes of resonances, were used to develop and to test the performances of these models. The ANN model was trained using Levenberg-Marquardt (LM) algorithm, and the ANFIS model was trained using hybrid algorithm learning that is a combination of Last Square Estimate and the gradient descent back-propagation algorithm. Several configurations are evaluated during the development of these networks. The Mean Absolute Error (MAE), Mean Relative Error (MRE), Standard Error (SE), Root Mans Square Error (RMSE) and Correlation Coefficient (R) were the statistical performance indices that were used to evaluate the accuracy of the various models. Based on the comparison between ANN and ANFIS, it was found, that the ANFIS model can be applied successfully in the in the modeling of the thickness of a Submerged Tube.

References
  1. Y. Nahraoui, E. Assif, G. Maze, R. Latif, ‘‘Modelling the Cut-off Frequency of Acoustic Signal with an Adaptative Neuro-Fuzzy Inference System (ANFIS)’’, IJACSA. Vol.4, No. 6, pp. 23-33, (2013)
  2. R. Latif, E. Aassif, M. Laaboubi, G. Maze, "Détermination de l’épaisseur d’un tube élastique à partir de l’analyse temps-fréquence de Wigner-Ville", Acta Acustica united with Acustica, Vol. 95, pp. 253-257, (2009)
  3. M. Talmant, J. L. Izbicki, G. Maze, G. Quentin J. Ripoche. ‘‘External wave resonance on thin cylindrical shells’’. J. Acoustique, 4, pp. 509-523(1991).
  4. L. Haumesser, D. Décultot, F. Léon, and G. Maze, "Experimental identification of finite cylindrical shell vibration modes", Journal of the Acoustical Society of America, Vol. 111, 5, pp. 2034-2039, (2002)
  5. J. D. N. Cheeke, X. Li, and Z. Wang, "Observation of flexural Lamb waves (A0 mode) on water-filled cylindrical shells", Journal of the Acoustical Society of America, Vol. 104, 6, pp. 3678-3680, (1998).
  6. P. L. Marston and N. H. Sun, “Backscattering near the coincidence frequency of a thin cylindrical shell: Surface wave properties from elastic theory and an approximate ray synthesis,” J. Acoust. Soc. Amer., vol. 97, pp. 777–783, 1995.
  7. G. Maze, “Acoustic scattering from submerged cylinders. MIIR Im/Re: Experimental and theoretical study,” J. Acoust. Soc. Amer., vol. 89, pp. 2559–2566,1991.
  8. R. Latif, E. Aassif, G. Maze, A. Moudden, B. Faiz, “Determination of the group and phase velocities from time-frequency representation of Wigner-Ville", Journal of Non Destructive Testing & Evaluation International, Vol.32, 7, pp. 415-422, (1999)
  9. G. Maze, J. Ripoche, A. Derem, J. L. Rousselot, “Diffusion d’une onde ultrasonore par des tubes remplis d’air immergés dans l’eau”, Acustica, vol. 55, pp. 69–85, (1984).
  10. R. LATIF, E. AASSIF, G. MAZE, D. DECULTOT, A. MOUDDEN, B. FAIZ, "Analysis of the circumferential acoustic waves backscattered by a tube using the time-frequency representation of Wigner-Ville", Journal of Measurement Science and Technology, Vol. 11, 1, pp. 83-88, (2000).
  11. R. LATIF, E. AASSIF, A. MOUDDEN, B. FAIZ, "Caractérisation ultrasonore d’un matériau élastique à partir de l’analyse de l’image temps-fréquence de Wigner-Ville ", Acta Acustica united with Acustica, Vol. 89, pp. 253-257, (2003).
  12. Younho Cho, "Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation", Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 47, 3, pp. 591-603, (2000).
  13. Atkinson D., Hayward G., “Embedded acoustic fibre wave guides for Lamb wave condition monitoring”, Ultrasonics Symposium, IEEE, Vol. 1, pp. 699-702, (1999).
  14. Sarıdemir M. Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Adv Eng Soft 2009;40(9):920–7.
  15. Fausett LV. Fundamentals of neural networks: architectures, algorithms, and applications. Prentice Hall; 1994.
  16. Suratgar AA, Tavakoli MB, Hoseinabadi A. Modified Levenberg–Marquardt method for neural networks training. World Acad Sci Eng Technol 2005;6:46–8.
  17. Jang J-SR. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 1993; 23(3):665–85.
  18. S. Horikawa, T. Furuhashi, and Y Uchikawa. IEEE Trans. Neural Networks 3:801-806, 1992.
  19. H. Ishibuchi, R. Fujioka, and H. Tanaka. IEEE Trans. Fuzzy Systems 1:85-97, 1993.
  20. Lee CC. Fuzzy logic in control system: Fuzzy logic controller—part I and part II. IEEE Trans Syst Man Cybern 1990; 20(2):404–35.
  21. Sugeno M. Industrial applications of fuzzy control. New York: Elsevier Ltd.; 1985.
  22. S. K. Singh, K. Srinivasan, and D. Chakraborty, “Acoustic characterization and prediction of surface roughness,” J. Mater. Processing Technol., vol. 152, pp. 127–130, 2004.
  23. G. Dreyfus, J. M. Martinez, M. Samuelides, M. B. Gordon,F. Badran, S. Thiria, and L. H´erault, R´eseaux de Neurones Méthodologie et Applications. 2nd ed. Paris, France: Eyrolles, 2004. (in French)
  24. I. J. Leontaritis and S. A. Billings, “Model selection and validation methods for non linear systems,” J. Contr., vol. 45, pp. 349–359, 1997.
  25. D. Plaut, S. Nowlan, and G. E. Hinton, “Experiments on learning by back propagation,” Technical Report CMU-CS-86-126, Carnegie-Mellon University, Pittsburgh, PA, 1986.
  26. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error back propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition. vol. 1, Cambridge, MA: MIT Press, 1986, pp. 318– 362.
Index Terms

Computer Science
Information Sciences

Keywords

Fuzzy logic ANFIS Artificial Neural Network Acoustic response Submerged elastic shell Scattering waves Circumferential waves.