We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

One Way Functions –Conjecture, Status, Applications and Future Research Scope

by Amit Sharma, Sunil Kr. Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 153 - Number 8
Year of Publication: 2016
Authors: Amit Sharma, Sunil Kr. Singh
10.5120/ijca2016912126

Amit Sharma, Sunil Kr. Singh . One Way Functions –Conjecture, Status, Applications and Future Research Scope. International Journal of Computer Applications. 153, 8 ( Nov 2016), 28-31. DOI=10.5120/ijca2016912126

@article{ 10.5120/ijca2016912126,
author = { Amit Sharma, Sunil Kr. Singh },
title = { One Way Functions –Conjecture, Status, Applications and Future Research Scope },
journal = { International Journal of Computer Applications },
issue_date = { Nov 2016 },
volume = { 153 },
number = { 8 },
month = { Nov },
year = { 2016 },
issn = { 0975-8887 },
pages = { 28-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume153/number8/26424-2016912126/ },
doi = { 10.5120/ijca2016912126 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:58:36.224083+05:30
%A Amit Sharma
%A Sunil Kr. Singh
%T One Way Functions –Conjecture, Status, Applications and Future Research Scope
%J International Journal of Computer Applications
%@ 0975-8887
%V 153
%N 8
%P 28-31
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The conjecture that one way function exists is an open problem, the resolution of which holds the key for the solution of many unsolved problems in mathematics and cryptography. This paper presents the introduction of one way functions from complexity & modern cryptography theory viewpoint and their significance in cryptographic applications and research. This paper presents the features and limitations of proposed candidate functions, and the implications of proof of one way functions conjecture.

References
  1. S. Goldwasser, M. Bellare, Lecture notes on cryptography, MIT press, Cambridge, Massachusetts, 2001.
  2. C. Barski, and C. Wilmer, Bitcoin for the Befuddled, No starch press, 2014.
  3. W. Diffie, and M. Hellman, New directions in cryptography, IEEE trans. on information theory 22(6), 1976.
  4. M. Kao, Encyclopedia of algorithms, Springer-Verlag, New York Inc, 2008.
  5. E. Weisstein, One-Way Function, from MathWorld- http://mathworld.wolfram.com/One-WayFunction.html
  6. N. Koblitz, Elliptic curve cryptosystems, Mathematics of computation 48.177,1987.
  7. V. Miller, Use of Elliptic Curves in Cryptography, In Advances in Cryptology (CRYPTO '85), Hugh C. Williams (Ed.). Springer-Verlag, London, 1985.
  8. P. Rogaway, and T. Shrimpton, Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance, International Workshop on Fast Software Encryption, Springer Berlin Heidelberg, 2004.
  9. R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions, Science 297(5589):2026-30, 2002.
  10. I. Hiroshi, and M. Hayashi, eds. Quantum computation and information: from theory to experiment, Vol. 102 Springer Science & Business Media, 2008.
  11. R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM 21 (2), 1978.
  12. S. Singh, The Code Book, Doubleday, 1999.
  13. S. Goldwasser, S. Micali, and R. Rivest, A digital signature scheme secure against adaptive chosen-message attacks, SIAM Journal on Computing, 17(2), 1988.
  14. B. Forouzan, Cryptography and network security, pub. McGraw-Hill companies, ISBN-13: 978-0-07-066046-5, 2009.
  15. T. Holenstein, Pseudorandom generators from one-way functions: A simple construction for any hardness, Theory of Cryptography Conference. Springer Berlin Heidelberg, 2006.
  16. J. Håstad, R. Impagliazzo, L. Levin, and M. Luby, A pseudorandom generator from any one-way function, SIAM Journal on Computing 28(4),1999.
  17. Pseudorandom function family, from Wikipedia web. https://en.wikipedia.org/wiki/One-way_function
  18. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, Journal of the ACM (JACM) 33.4, 1986.
  19. M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication, Annual International Cryptology Conference,Springer Berlin Heidelberg, 1996.
  20. A. Sharma and S. Singh, P vs NP Solution – Advances in Computational Complexity, Status and Future Scope, to be published, 2016.
  21. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge complexity of interactive proof-systems. Proceedings of 17th ACM Symposium on the Theory of Computation, Providence, Rhode Island. 1985.
  22. O. Goldreich, M. Silvio, and A. Wigderson, Proofs that yield nothing but their validity, Journal of the ACM. 38 (3), 1991.
  23. A. A. Razborov and S. Rudich, Natural proofs, Journal of Computer and System Sciences. 55, 1997
Index Terms

Computer Science
Information Sciences

Keywords

Public Key Cryptography RSA one way functions Pseudorandom generators P vs NP Digital signatures MAC Authentication Zero error proofs.