CFP last date
20 January 2025
Reseach Article

Variational Iteration Method for Solving Two Dimensional Volterra - Fredholm Nonlinear Integral Equations

by M. H. Saleh, D. Sh. Mohamed, R. A. Taher
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 152 - Number 3
Year of Publication: 2016
Authors: M. H. Saleh, D. Sh. Mohamed, R. A. Taher
10.5120/ijca2016911822

M. H. Saleh, D. Sh. Mohamed, R. A. Taher . Variational Iteration Method for Solving Two Dimensional Volterra - Fredholm Nonlinear Integral Equations. International Journal of Computer Applications. 152, 3 ( Oct 2016), 29-33. DOI=10.5120/ijca2016911822

@article{ 10.5120/ijca2016911822,
author = { M. H. Saleh, D. Sh. Mohamed, R. A. Taher },
title = { Variational Iteration Method for Solving Two Dimensional Volterra - Fredholm Nonlinear Integral Equations },
journal = { International Journal of Computer Applications },
issue_date = { Oct 2016 },
volume = { 152 },
number = { 3 },
month = { Oct },
year = { 2016 },
issn = { 0975-8887 },
pages = { 29-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume152/number3/26302-2016911822/ },
doi = { 10.5120/ijca2016911822 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:57:12.647141+05:30
%A M. H. Saleh
%A D. Sh. Mohamed
%A R. A. Taher
%T Variational Iteration Method for Solving Two Dimensional Volterra - Fredholm Nonlinear Integral Equations
%J International Journal of Computer Applications
%@ 0975-8887
%V 152
%N 3
%P 29-33
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we investigate the numerical solution of two dimensional Volterra – Fredholm integralequations by Variational iteration method. Two numerical examples are given to illustrate themethod.

References
  1. Darania . p and Ebadian . A ; Numerical solutions of the nonlinear two dimensional Volterraintegral equations .Newzealand Journal of mathematics .vol36(2007), 163 − 174.
  2. Nemati .S and Ordokhanyi .Y ; Numerical solution of two dimensional nonlinear Volterraintegral equations by the Lagendre polynomials .J . SCI . Tarbiat Moalem University.vol11,No.2(2012), 195 − 210 .
  3. Saeedi . L , Tari . A and Masuleh . S . H . M ; Numerical solution of some nonlinearVolterra integral equations of the first kind .Applications and Applied Mathematics. vol8, (2013), 214 − 226
  4. Bazm .S and Lima .P ; Numerical solutions of the nonlinear second kind two dimensionalVolterra integral equations using Extrapolation method .Numerical Analysis and Applied Mathematics, International conference(2010), 1195 − 1198
  5. Gholami .A ;Solving system of two dimensional nonlinear Volterra -Fredholm integro -differential equations by hes Variational Iteration method .Researcher (2015), 81 − 85
  6. Erfanian .H .R and Mostahahsan .T ;Approximate solution of a class of nonlinear integralequations . The Journal of mathematics and computer science vol.3,No.3(2011), 278 − 286
  7. Bahzadi .Sh .S ;The use of Iterative methods to solve two dimensional nonlinear Volterra-Fredholm integro -differential equations .ISPACS , vol.(2012), 20pages
  8. Rabbani .M and Jamali .R ;solving nonlinear system of mixed Volterra -Fredholm integral equations by using Variational Iteration method . The Journal of mathematics and computerscience vol.5,No.4, (2012), 280 − 287
  9. Borzabadi .A .H and Hedari .M ; A successive iterative approach for two dimensional nonlinearVolterra -Fredholm integro -differential equations .Iranian Journal of Numerical Analysisand optimization .vol.4,No.1(2014), pp95 − 104
  10. Wazwaz . A ; Reliable Treatment for Mixed Volterra-Fredholm in Integral EquationsAppl.Math.comput.127(2002)405 − 414 .
  11. Biazar . J, Ghazvini . H ; He’s variational iteration method for solving linearand nonlinear systems of ordinary differential equations, Applied mathematics andcomputation,191(2007)287 − 297.
  12. Finlayson . B . A , The method of weighted residuals and variational principles , Academicpress, (1972) Newyork
  13. He . J . H ; A new approach to nonlinear partial differential equations, Communications inNonlinear science and Numerical simulation,V ol.2,No.4(1997)230 − 235.
  14. He . J . H ; Nonlinear oscillation with fractional derivative and it’s approximation, Int,conf.on vibration Engineering98,Dalian,China, (1998).
  15. He . J . H, Variational iteration method for nonlinear and it’s applications, Mechanics andpractice,20, (1)(1998)30 − 32(inchinese)
  16. He . J . H ; Variational Iteration method - a kind of nonlinear analytical technique:Someexamples, Int.Journal of Nonlinear Mechanics,34(1999)699 − 708.
  17. Inokuti . M ; General use of the Lagrange multiplier in in nonlinear mathematicalphysics,in: S. Nemat-nasser(Ed.), Variational Method in Mechanics of solids, Progamonpress, oxford, (1978)156 − 16210
  18. Xu. Lan ; Variational iteration method for solving integral equations, computers and Mathematicswith Applications,54(2007)1071 − 1078
  19. Abdollah Borhanifar. and Khadijeh Sadri, Numerical solution for systems of two dimensionalintegral equations by using Jacobi operational collocation method.Sohag J. Math. 1, No. 1,15-26 (2014).
  20. Tatari . M , Dehghan . M ; On the Convergence of He’s Variational Iteration Method, J.comput.Appl.Math,207(2007)121−128
Index Terms

Computer Science
Information Sciences

Keywords

Variational iteration method Volterra-fredholm Lagrange multiplier Two dimensional equations.