CFP last date
20 February 2025
Reseach Article

Adaptive Binary PSO based Unit Commitment

by R. K. Santhi, S. Subramanian
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 15 - Number 4
Year of Publication: 2011
Authors: R. K. Santhi, S. Subramanian
10.5120/1940-2591

R. K. Santhi, S. Subramanian . Adaptive Binary PSO based Unit Commitment. International Journal of Computer Applications. 15, 4 ( February 2011), 1-6. DOI=10.5120/1940-2591

@article{ 10.5120/1940-2591,
author = { R. K. Santhi, S. Subramanian },
title = { Adaptive Binary PSO based Unit Commitment },
journal = { International Journal of Computer Applications },
issue_date = { February 2011 },
volume = { 15 },
number = { 4 },
month = { February },
year = { 2011 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume15/number4/1940-2591/ },
doi = { 10.5120/1940-2591 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:03:41.346998+05:30
%A R. K. Santhi
%A S. Subramanian
%T Adaptive Binary PSO based Unit Commitment
%J International Journal of Computer Applications
%@ 0975-8887
%V 15
%N 4
%P 1-6
%D 2011
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper presents a binary PSO based solution technique for power system unit commitment. The intelligent generation of initial population and the repairing mechanism ensure feasible solution that satisfies the spinning reserve and unit minimum up/down constraints. The algorithm adoptively adjusts the inertia weight and the acceleration coefficients in order to enhance the search process and arrive at the global optimum. Numerical results on systems up to 100 generating units demonstrate the effectiveness of the proposed strategy.

References
  1. AJ. Wood and BF. Wollenberg. (1996). Power generation, operation and control. John Wiley and sons, New York.
  2. HH. Happ, RC. Johnson and WJ. Wright. (1971). Large Scale Hydrothermal unit Commitment method and results. IEEE Trans. On PAS, PAS – 90: 1373-1383.
  3. CJ. Baldwin, KM. Dale and RF. Dittrich. (1960). A study of econmic shutdown of generating units in daily dispatch. AIEE Tr on PAS, 78: 1272-1284.
  4. WL. Snyder, HD. Powell Jr and JC. Rayburn. (1987). Dynamic programming Approach to unit commitment. IEEE Trans. Power Syst., PWRS S-2(2): 339-350.
  5. WJ. Hobbs, G. Hermon, S. Warner and GB. Sheble. (1982). An Enhanced Dynamic programming Approach for unit commitment. IEEE Trans. on PAS, PAS-101: 79-86.
  6. TS. Dillon and KW. Edwin. (1978). Integer Programming approach to the problem of optimal unit commitment with probabilistic reserve Determination. IEEE Trans. on PAS, PAS – 97(6): 2154-2166.
  7. AI. Cohen and M.Yoshimura. (1983). A Branch and bound algorithm for unit commitment. IEEE Trans. on PAS, PAS-10: 444 – 451.
  8. FN. Lee. (1989). A Fuel constrained unit commitment method. IEEE Trans. Power Syst., 4(3): 691-698.
  9. CP. Cheng, CW. Liu and CC. Liu. (2000). Unit commitment by Lagrangian relaxation and genetic algorithem, IEEE Trans. Power Syst., 15: 707-714.
  10. Weerakorn Ongsakul and Nit petcharaks. (2004). Unit commitment by enhanced adaptive Lagrangian Relaxation, IEEE Trans. Power Syst., 19(1): 620-628.
  11. SA. Kazarlis, AG. Bakirtzis and V. Petidis. (1996). A genetic algorithm solution to unit commitment problem, IEEE Trans. Power Syst., 11: 83-92.
  12. T. Senjyu, H. Yamashiro, K. Shimabukuro, K. Uezato and T. Funabashi. (2003). Fast solution for large-scale unit commitment problem using genetic algorithm, IEE Proc.-Gener. Transm. Distrib., 150(6): 753-760.
  13. DN. Simopoulos, SD. Kavatza and CD. Vournas. (2006). Unit commitment by an enhanced simulated annealing algorithm , IEEE Trans. Power Syst., 21(1): 68-76.
  14. K.A. Juste, H. Kita, E. Tanaka and J. Hasegawa. (1999). An evolutionary programming solution to the unit commitment problem, IEEE Trans. Power Syst., (14): 1452-1459.
  15. Yun-Won Jeong and Jong-Bae Park. (2010)A new quantum-inspired binary PSO: Application to unit commitment problems for power systems, , IEEE Trans. Power Syst., (25(3): 1486-1495.
  16. B. Zhao, CX. Guo, BR. Bai and YJ. Cao. (2006). An improved particle swarm optimization algorithm for unit commitment, Elect. Power Energy Syst., 28(7): 482-490.
  17. X. Yuan, H. Nie, A. Su, L. Wang and Y. Yuan. (2009). An improved binary particle swarm optimization for unit commitment problem, Journal of Expert Systems with Applications, 36(4): 8049-8055.
  18. J. Kennady and RC. (1995). Eberhart.Particle swarm optimization, Proc. of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, IV: 1942-48.
  19. J. Kennady and RC. Eberhart, (1997) A discrete binary version of the particle swarm algorithm, Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, 5: 4104-4108.
  20. KT. Chaturvedi, M.Pandit and L.Srivastava. (2008). Self-organizing hierarchical particle swarm optimiation for nonconvex economic dispatch, IEEE Trans. Power Syst., 23(3): 1079-1089.
  21. Ratnaweera, SK. Halgamuge and HC. Watson. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. E Comput., 8(3): 240-255.
Index Terms

Computer Science
Information Sciences

Keywords

Unit commitment particle swarm optimization lambda iteration method