CFP last date
20 December 2024
Reseach Article

FESM: An Analytical Framework for Elastic Similarity Measures Based Time Series Pattern Recognition

by Nafas Esmaeili, Karim Faez
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 149 - Number 5
Year of Publication: 2016
Authors: Nafas Esmaeili, Karim Faez
10.5120/ijca2016911399

Nafas Esmaeili, Karim Faez . FESM: An Analytical Framework for Elastic Similarity Measures Based Time Series Pattern Recognition. International Journal of Computer Applications. 149, 5 ( Sep 2016), 16-22. DOI=10.5120/ijca2016911399

@article{ 10.5120/ijca2016911399,
author = { Nafas Esmaeili, Karim Faez },
title = { FESM: An Analytical Framework for Elastic Similarity Measures Based Time Series Pattern Recognition },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2016 },
volume = { 149 },
number = { 5 },
month = { Sep },
year = { 2016 },
issn = { 0975-8887 },
pages = { 16-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume149/number5/25992-2016911399/ },
doi = { 10.5120/ijca2016911399 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:53:54.085036+05:30
%A Nafas Esmaeili
%A Karim Faez
%T FESM: An Analytical Framework for Elastic Similarity Measures Based Time Series Pattern Recognition
%J International Journal of Computer Applications
%@ 0975-8887
%V 149
%N 5
%P 16-22
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Compare the similarity of time series is a key for most tasks and there are various similarity measures which measure the similarity of time series. Similarity measures are the basis of time series research, they are quite important for improving the efficiency and accuracy of the time series pattern recognition tasks. Therefore selection the best similarity measures are very essential. On this issue, in this paper an analytical framework for elastic similarity measures based time series pattern recognition as, FESM for short, is proposed. FESM consists of three main components: 1) Classification of elastic similarity measures of time series, 2) Comparative evaluation of classified similarity measures based on proposed qualitative evaluation criteria, and 3) Application scopes of classified similarity measures. FESM will be proper for the quick understanding and comparing of time series similarity measures, and selection the best of existing similarity measures for respective time series pattern recognition tasks.

References
  1. Lin, J., Williamson, S., Borne, K., DeBarr, D. 2012. Pattern recognition in time series. Advances in Machine Learning and Data Mining for Astronomy. Eds. Kamal, A., Srivastava, A., Way, M., and Scargle, J. Chapman & Hall. To Appear.
  2. Cerioli, A., Laurini, F., and Corbellini, A. 2005. Functional cluster analysis of financial time series. In New Developments in Classi_cation and Data Analysis, eds. Vichi, M., Monari, P., Mignani, S., Montanari, A. Springer-Verlag, Berlin, pages 333-341.
  3. Conti, J.C., Farial, F.A., Almeida, J., Alberton, B., Morellato, P. C. L., Camolesi, L., Torres, R. 2014. Evaluation of Time Series Distance Functions in the Task of Detecting Remote Phenology Patterns. ICPR 2014: 3126-3131
  4. Vijayakumar, V., Nedunchezhian, R. 2012. A study on video data mining. IJMIR 1(3): 153-172
  5. Silva, D. F., Souza, V., De, M., Batista, G. E. 2013. Time series classification using compression distance of recurrence plots. In Data Mining (ICDM), 2013 IEEE 13th International Conference on, pages 687–696. IEEE.
  6. Iglesias, F., Kastner, W. 2013. Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns, Energies, vol. 6, no. 2, pp. 579–597.
  7. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E. 2012. Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc.
  8. Esling, P., Agón, C. 2012. Time-series data mining. ACM Comput. Surv. 45(1):12.
  9. Shams, MB., Haji, S., Salman, A., Abdali, H., Alsaffar, A. 2016. Time series analysis of Bahrain's first hybrid renewable energy system.Energy 103, 1-15.
  10. Ye, L., Keogh, E. 2011. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification Data Min Knowl Disc.Volume 22, Issue 1, pp 149–182.
  11. Spiegel, S. 2015. Time series distance measures. Segmentation, classification, and clustering of temporal data. Doctoral Thesis. http://dx.doi.org/10.14279/depositonce-4619.
  12. Yi, B.-K. Faloutsos, C. 2000. Fast time sequence indexing for arbitrary lp norms. International Conference on Very Large Data Bases, pp. 385–394.
  13. Fallouts, C., Ranganathan, M., Manolopoulos, Y.(1994). Fast subsequence matching in time-series databases. In proceedings of the ACM SIGMOD Int’l Conference on Management of Data.pp 419-429.
  14. Berndt, D. J., Clifford, J. 1994. Using Dynamic Time Warping to Find Patterns in Time Series, in KDD Workshop, 1994, pp. 359–370.
  15. Izakian, Z., Mesgari, MS., Abraham, A. 2016. Clustering of trajectory data using a particle swarm optimization Computers, Environment and Urban Systems- Elsevier.Volume 55.Pages 55–65.
  16. Keogh, E. 2002. Exact Indexing of Dynamic Time Warping. In Proceedings of the 28th international Conference on Very Large Data Bases. Hong Kong, China.
  17. Ratanamahatana, CA., Lin, J., Gunopulos, D., Keogh, E., Vlachos M, Das G. 2005. Mining time series data. Data Mining and Knowledge Discovery Handbook, Maimon O, Rokach L (eds.).Springer: Berlin.ISBN: 978-0-387-24435-8.
  18. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., & Keogh, E. 2008. Querying and mining of time series data: Experimental comparison of representations and distance measures. Proceeding of the VLDB Endowment, 1(2), 1542–1552.
  19. Vlachos, M., Kollios, G., Gunopulos, D. 2002. Discovering similar multidimensional trajectories. In: Proceedings 18th International Conference on Data Engineering. IEEE Comput. Soc, pp. 673–684.
  20. Kurbalija, V., Radovanovi´c, M., Geler, Z., Ivanovi´c, M. 2014. The influence of global constraints on similarity measures for time-series databases. Knowledge-Based Systems 56, 49–67.
  21. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.J. 2006. Indexing Multidimensional Time-Series. VLDB J., 15(1).
  22. Chen, L., Ng, R. 2004. On the marriage of lp-norms and edit distance. pp. 792–803.
  23. Chen, L., Ozsu, M.T., Oria, V. 2005. Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. ACM, New York, NY, USA, pp. 491–502.
  24. Jin, Z., Bhanu, B. 2013. Optimizing crowd simulation based on real video data, in: IEEE International Conference on Image Processing (ICIP), Melbourne, VIC, Australia, pp. 3186–3190. doi:10.1109/ICIP.2013.6738656.
  25. Bouarada Ghrab, N., Fendri, E., Hammami, M. 2016. Clustering Based Abnormal Event Detection: Experimental Comparison for Similarity Measures' Efficiency. ICIAR .367-374.
  26. Zhang, Z., Huang, K., Tan, T. 2006. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. Proceedings of the 18th International Conference on Pattern Recognition (ICPR'06).1135-1138
  27. Abdelbar, M., Buehrer R.M. 2016. Improving Cellular Positioning Indoors Through Trajectory Matching. Conference:IEEE/ION Position, Location and Navigation Symposium-DOI:10.1109/PLANS.2016.7479705
  28. Vileiniskis, M., Remenyte-Prescott, R., Rama, D. 2015. A fault detection method for railway point systems. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit.
  29. Andrade, E.L., Fisher, R.B. 2005. Simulation of crowd problems for computer vision. In Proceedings First International Workshop on Crowd Simulation, vol. 3. pp.7
Index Terms

Computer Science
Information Sciences

Keywords

Time Series Pattern Recognition Elastic Similarity Measures.