CFP last date
20 December 2024
Reseach Article

Characteristics of InxGa1-XN based Light Emitting Diode with InGaN Barriers

by Sakshi Mehendiratta, Amandeep Kaur
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 147 - Number 2
Year of Publication: 2016
Authors: Sakshi Mehendiratta, Amandeep Kaur
10.5120/ijca2016910989

Sakshi Mehendiratta, Amandeep Kaur . Characteristics of InxGa1-XN based Light Emitting Diode with InGaN Barriers. International Journal of Computer Applications. 147, 2 ( Aug 2016), 13-17. DOI=10.5120/ijca2016910989

@article{ 10.5120/ijca2016910989,
author = { Sakshi Mehendiratta, Amandeep Kaur },
title = { Characteristics of InxGa1-XN based Light Emitting Diode with InGaN Barriers },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2016 },
volume = { 147 },
number = { 2 },
month = { Aug },
year = { 2016 },
issn = { 0975-8887 },
pages = { 13-17 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume147/number2/25624-2016910989/ },
doi = { 10.5120/ijca2016910989 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:52:00.484236+05:30
%A Sakshi Mehendiratta
%A Amandeep Kaur
%T Characteristics of InxGa1-XN based Light Emitting Diode with InGaN Barriers
%J International Journal of Computer Applications
%@ 0975-8887
%V 147
%N 2
%P 13-17
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The characteristics of blue InGaN multiple quantum well (MQW) Light Emitting Diodes (LEDs) with InGaN barriers are studied. The current-voltage (I-V) curve, Internal Quantum Efficiency (IQE), spontaneous rate are investigated. The simulation results show that the newly In0.15Ga0.85N /InGaN LED (Device 1) has reduced the forward voltage due to reduced energy barriers for electron and hole transport as compare to In0.2Ga0.8N/InGaN LED (Device 2). The Internal Quantum Efficiency (~98.5 %), Output Power (~1497.8 W/m) and spontaneous rate (~ 616.8 ×1026) achieved is more in case of In0.15Ga0.85N /InGaN 3-QW LED.

References
  1. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, no. 18, pp. 183507-1–183507-3, Oct. 2007.
  2. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization- matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett., vol. 93, no. 4, pp. 041102-1–041102-3, Jul. 2008.
  3. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, no. 14, pp. 141101-1–141101-3, Oct. 2007.
  4. J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi (A), vol. 207, no. 10, pp. 2217–2225, Oct. 2010.
  5. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett., vol. 96, no. 22, pp. 221106-1–221106-3, Jun. 2010.
  6. R. J. Choi, Y. B. Hahn, H. W. Shim, M. S. Han, E. K. Suh, and H. J. Lee, “Efficient blue light-emitting diodes with InGaN/GaN triangular shaped multiple quantum wells,” Appl. Phys. Lett., vol. 82, no. 17, pp. 2764–2766, Apr. 2003.
  7. A. J. Ghazai, S. M. Thahab, H. A. Hassan, and Z. Hassan, “Quaternary ultraviolet AlInGaN MQW laser diode performance using quaternary AlInGaN electron blocking layer,” Opt. Exp., vol. 19, no. 10, pp. 9245–9254, May 2011.
  8. X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells,” Appl. Phys. Lett., vol. 93, no. 17, pp. 171113-1–171113-3, Oct. 2008.
  9. S. H. Han, D. Y. Lee, S. J. Lee, C. Y. Cho, M. K. Kwon, S. P. Lee, D. Y. Noh, D. J. Kim, Y. C. Kim, and S. J. Park, “Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, no. 23, pp. 231123-1–231123-3, Jun. 2009.
  10. S. F. Chichibu, T. Sota, K. Wada, O. Brandt, K. H. Ploog, S. P. DenBaars, and S. Nakamura, “Impact of internal electric field and localization effect on quantum well excitons in AlGaN/GaN/InGaN light emitting diodes,” Phys. Status Solidi (A), vol. 183, no. 1, pp. 91–98, Jan. 2001.
  11. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of auger electrons emitted from a semiconductor light emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett., vol. 110, no. 17, pp. 177406-1–177406-3, Apr. 2013.
  12. C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-As GaNAs alloy for visible light emitters,” J. Display Technol., vol. 9, no. 4, pp. 272–279, Apr. 2013.
  13. APSYS by Crosslight Software Inc. Burnaby, Canada [Online]. Available: http://www.crosslight.com.
  14. O. Ambacher “Growth and applications of group III-nitrides”, J. Phys. D: Appl. Phys.,vol. 31, no. 20, pp. 2653-2710, June 1998.
  15. C. Trager-Cowan “Report on the evening rump session on InN – July 21, 2004 at the 2004 International Workshop on Nitride Semiconductors”, Phys. Status Solidi, vol.2, no. 7, pp. 2240-2245, May 2005.
Index Terms

Computer Science
Information Sciences

Keywords

InGaN barriers Light Emitting Diodes (LEDs) Multi-Quantum well structure.