CFP last date
20 December 2024
Reseach Article

Characters for the Permutation Group of Degree n using Specht Module and Semi Standard Young Tableaux

by A. Ganapathi Rao, N. Ravi Shankar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 147 - Number 1
Year of Publication: 2016
Authors: A. Ganapathi Rao, N. Ravi Shankar
10.5120/ijca2016910734

A. Ganapathi Rao, N. Ravi Shankar . Characters for the Permutation Group of Degree n using Specht Module and Semi Standard Young Tableaux. International Journal of Computer Applications. 147, 1 ( Aug 2016), 7-11. DOI=10.5120/ijca2016910734

@article{ 10.5120/ijca2016910734,
author = { A. Ganapathi Rao, N. Ravi Shankar },
title = { Characters for the Permutation Group of Degree n using Specht Module and Semi Standard Young Tableaux },
journal = { International Journal of Computer Applications },
issue_date = { Aug 2016 },
volume = { 147 },
number = { 1 },
month = { Aug },
year = { 2016 },
issn = { 0975-8887 },
pages = { 7-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume147/number1/25615-2016910734/ },
doi = { 10.5120/ijca2016910734 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:50:42.453106+05:30
%A A. Ganapathi Rao
%A N. Ravi Shankar
%T Characters for the Permutation Group of Degree n using Specht Module and Semi Standard Young Tableaux
%J International Journal of Computer Applications
%@ 0975-8887
%V 147
%N 1
%P 7-11
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

For any partition, the corresponding Specht module is the sub module of permutation module spanned by the poly-tabloids. The Specht modules for a partition of a positive integer n form a complete list of irreducible representations of permutation group of degree n. The Semi-Standard Young Tableau (SSYT), on n -symbols are one type of combinatorial objects occur naturally in many computational problems in Science, Engineering and Technology, which have one-to-one correspondence with Gelfand–Tzetlin bases set of the Unitary group U (n).In this paper, we propose a method to construct character table of permutation group of degree n using Specht module and Semi Standard Young Tableaux. This method is illustrated with an example using a partition of degree 5 in permutation group S5.

References
  1. Specht, Wilhelm. "Die irreduziblen Darstellungen der symmetrischen Gruppe." Mathematische Zeitschrift 39.1 (1935): 696-711.
  2. Garnir, Henri G. Théorie de la représentation linéaire des groupes symétriques. Ceuterick, 1950.
  3. M.Hamermash,"Group theory and its application to physical problems",University south ampton. 1964.
  4. E.Jenkins, " Representation Theory of ", University of Chicago, Math 26700, 2009.
  5. E.Ouchterlony,"On Young Tableau Involutions and Patterns in Permutations ",Linkoping University Sweden ,2005 .
  6. G.B.Robinson," The Degree of an Irreducible Representation of ",University Toronto , Canada,Murnaghan 1956
  7. R.J.Bayley, " Young Tableaux and the Robinson Schensted Knuth Correspondence", MSC. University of Leicester, 2002.
  8. I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford Univ. Press, 1995
  9. R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, San Diego, 1991
  10. A. Young, The Collected Papers of Alfred Young, University of Toronto Press, Toronto, 1977.
Index Terms

Computer Science
Information Sciences

Keywords

Permutation group Partition Young Tableaux Semi Standard Young Tableaux Permutation Module Specht Module