CFP last date
20 December 2024
Reseach Article

On the Termination Problem for String Rewrite Systems

by Nacer Ghadbane, Douai Mihoubi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 146 - Number 6
Year of Publication: 2016
Authors: Nacer Ghadbane, Douai Mihoubi
10.5120/ijca2016910811

Nacer Ghadbane, Douai Mihoubi . On the Termination Problem for String Rewrite Systems. International Journal of Computer Applications. 146, 6 ( Jul 2016), 28-30. DOI=10.5120/ijca2016910811

@article{ 10.5120/ijca2016910811,
author = { Nacer Ghadbane, Douai Mihoubi },
title = { On the Termination Problem for String Rewrite Systems },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2016 },
volume = { 146 },
number = { 6 },
month = { Jul },
year = { 2016 },
issn = { 0975-8887 },
pages = { 28-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume146/number6/25404-2016910811/ },
doi = { 10.5120/ijca2016910811 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:49:41.212309+05:30
%A Nacer Ghadbane
%A Douai Mihoubi
%T On the Termination Problem for String Rewrite Systems
%J International Journal of Computer Applications
%@ 0975-8887
%V 146
%N 6
%P 28-30
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Based on some result given in [2], concerning the termination of a semi-Thue systeme, we give some results illustrated by some examples to give some Noetherian semi-Thue systems.

References
  1. Berstel & D. Perrin. "Theoryofcodes", Academic Press (1984).
  2. R. V. Book, F. Otto, "String-Rewriting Systems", Springer-Verlag, (1993).
  3. N. Dershowitz, "Termination of Rewriting", Jornal of Symbolic Computation,vol 3, pp. 69-116, (1987).
  4. M. Eytan, G. TH. Guilbaud, Présentation de quelques monoïdes finis. Mathématiques et sciences humaines, vol,7, pp. 3-10, (1964).
  5. R. Floyd, R. Beigel, Traduction de D. Krob, "Le langage des machines", International Thomson France, paris, (1995).
  6. Y. Metivier, "Calcul de longueurs de chaînes de réécriture dans le monoïde libre", Theoretical Computer Science, vol 35, pp. 71-87, (1985).
  7. Y. Lafont, "A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier)", Journal of Pur and Applied Algebra, vol 98, pp. 229-244, (1995).
  8. Y. Lafont, "Réécritue et problème du mot", Gazette des Mathématiciens, pp. 27-38, (2009).
  9. Y. Lafont. Algebra and Geometry of Rewrtiting. Laboratoire de Mathématiques Discrètes de Luminy, Marseille, France. (2006).
  10. M. Lohrey, " The Compressed Word Problem for Groups", Springer (2014).
  11. M. Nivat. Sur le noyau d'un morphisme du monoïde libre, Proceedings de Séminaire Schutzenberger, vol 1, pp. 1-6, (1970).
  12. D. Kapur and P. Narendran,A Finite Thue System With Decidable Word Problem And Without Equivalent Finite Canonical System", Theoretical Computer Science, vol 35, pp. 337-344, (1985).
  13. M. Nivat. Sur le noyau d'un morphisme du monoïde libre, Séminaire Schutzenberger, tom 1 (1969/1970), exp. N0 4, p. 1-6.
  14. J. Rouyer. Preuves de terminaison de systèmes de réécriture fondées sur les interprétations polynomiales. CRIN, Nancy, (1989).
  15. H. Zantema, Termination of String Rewriting Proved Automatically, TU Eindhoven, (2004).
Index Terms

Computer Science
Information Sciences

Keywords

Free monoid morphism of monoids closure of a binary relation rewriting systems of words well-founded (Noetherian) weight function.