CFP last date
20 January 2025
Reseach Article

Energy based Methods for Medical Image Segmentation

by Pamela Juneja, Ramgopal Kashyap
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 146 - Number 6
Year of Publication: 2016
Authors: Pamela Juneja, Ramgopal Kashyap
10.5120/ijca2016910808

Pamela Juneja, Ramgopal Kashyap . Energy based Methods for Medical Image Segmentation. International Journal of Computer Applications. 146, 6 ( Jul 2016), 22-27. DOI=10.5120/ijca2016910808

@article{ 10.5120/ijca2016910808,
author = { Pamela Juneja, Ramgopal Kashyap },
title = { Energy based Methods for Medical Image Segmentation },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2016 },
volume = { 146 },
number = { 6 },
month = { Jul },
year = { 2016 },
issn = { 0975-8887 },
pages = { 22-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume146/number6/25403-2016910808/ },
doi = { 10.5120/ijca2016910808 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:49:40.442250+05:30
%A Pamela Juneja
%A Ramgopal Kashyap
%T Energy based Methods for Medical Image Segmentation
%J International Journal of Computer Applications
%@ 0975-8887
%V 146
%N 6
%P 22-27
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Health care applications have become boon for the healthcare industry. It needs correct segmentation connected with medical images regarding correct diagnosis. An efficient method assures good quality segmentation of medical images. Segmentation methods are classified as edge based, region based, clustering based, Level set methods (LSM) and Energy based methods. In this paper, a survey on all the effective methods those are capable for accurate segmentation is given, however quick process employing correct segments is still difficult. Some existing methods do correction and some badly pertain to deep irregularity in images. The wide range of the problems of computer vision may make good use of image segmentation. This paper studies and evaluate the different methods for segmentation techniques. This study is useful for determining the appropriate use of the image segmentation methods and for improving their accuracy and performance and also works on the main objective, which is designing new algorithms. The main goal is to make the image more simple and meaningful. After a brief description of each method an experimental comparison of some empirical (goodness and discrepancy) methods commonly used is then given to provide a rank of their evaluation abilities. This study is helpful for an appropriate use of existing segmentation methods and for improving their performance as well as for systematically designing new segmentation methods.

References
  1. Kryjak, T. (2014). Foreground Object Segmentation in Dynamic Background Scenarios.Image Processing & Communications, 19(2-3). http://dx.doi.org/10.1515/ipc-2015-0007
  2. Miao, Y. & Shi, W. (2012). Level Set Segmentation Method in Medical Image Segmentation Research and Application. AMM, 157-158, 1012-1015. http://dx.doi.org/10.4028/www.scientific.net/amm.157-158.1012
  3. Lew, M., Sebe, N., Djeraba, C., & Jain, R. (2006). Content-based multimedia information retrieval. ACM Trans. Multimedia Comput. Commun. Appl., 2(1), 1-19. http://dx.doi.org/10.1145/1126004.1126005
  4. Pham, D., Xu, C., & Prince, J. (2000). Current Methods in Medical Image Segmentation1.Annual Review Of Biomedical Engineering, 2(1), 315-337. http://dx.doi.org/10.1146/annurev.bioeng.2.1.315
  5. Krstinić, D., Skelin, A., & Slapničar, I. (2011). Fast two-step histogram-based image segmentation. IET Image Process., 5(1), 63. http://dx.doi.org/10.1049/iet-ipr.2009.0107
  6. Kezia, S., Prabha, I., & Kumar, V. (2013). A Color-Texture Based Segmentation Method To Extract Object From Background. International Journal Of Image, Graphics And Signal Processing, 5(3), 19-25. http://dx.doi.org/10.5815/ijigsp.2013.03.03
  7. Salman, N., Ghafour, B., & Hadi, G. (2015). Medical Image Segmentation Based on Edge Detection Techniques. Advances In Image And Video Processing, 3(2). http://dx.doi.org/10.14738/aivp.32.1006
  8. sha, N., Mehra, R., & Sharma, L. (2015). Comparative Analysis of Canny and Prewitt Edge Detection Techniques used in Image Processing. IJETT, 28(1), 48-53. http://dx.doi.org/10.14445/22315381/ijett-v28p210
  9. Alidoost, F., Sharifi, M., & Stein, A. (2015). Region- and pixel-based image fusion for disaggregation of actual evapotranspiration. International Journal Of Image And Data Fusion, 6(3), 216-231. http://dx.doi.org/10.1080/19479832.2015.1055834
  10. Rajkumar, K. & Raju, G. (2015). Automated Mammogram Segmentation Using Seed Point Identification and Modified Region Growing Algorithm. British Journal Of Applied Science & Technology, 6(4), 378-385. http://dx.doi.org/10.9734/bjast/2015/14383
  11. N. Waoo, R. Kashyap and A. Jaiswal, 2010,DNA Nano array analysis using hierarchical quality threshold clustering, The 2nd IEEE International Conference onInformation Management and Engineering (ICIME), Chengdu, 2010, pp. 81-85.doi: 10.1109/ICIME.2010.5477579
  12. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. Int J Comput Vision, 1(4), 321-331. http://dx.doi.org/10.1007/bf00133570
  13. Moallem, P., Tahvilian, H., & Monadjemi, S. (2015). Parametric active contour model using Gabor balloon energy for texture segmentation. Signal, Image And Video Processing, 10(2), 351-358. http://dx.doi.org/10.1007/s11760-015-0748-6
  14. Koibuchi, H. & Shobukhov, A. (2016). Internal phase transition induced by external forces in Finsler geometric model for membranes. Int. J. Mod. Phys. C, 27(04), 1650042. http://dx.doi.org/10.1142/s012918311650042x
  15. CAO, J., ZENG, Q., & WANG, J. (2011). Particle filter tracking algorithm based on geometric active contours. Journal Of Computer Applications, 31(5), 1205-1208. http://dx.doi.org/10.3724/sp.j.1087.2011.01205
  16. Zhou, S., Xu, Z., & Tang, X. (2010). Method for determining optimal number of clusters in Kmeans clustering algorithm. Journal Of Computer Applications, 30(8), 1995-1998. http://dx.doi.org/10.3724/sp.j.1087.20
  17. D.Patil, D. & Gupta, P. (2015). Growing Hierarchical Self-Organizing Map (GHSOM) for Mining Gene Expression Data. International Journal Of Computer Applications, 109(2), 16-17. http://dx.doi.org/10.5120/19160-0603
  18. Zhao, S., Zhou, M., & Wang, K. (2013). A Statistical Local Binary Fitting Model for Blood Vessel Segmentation. AMR, 756-759, 3430-3434. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.3430
  19. Wang, L., He, L., Mishra, A., & Li, C. (2009). Active contours driven by local Gaussian distribution fitting energy. Signal Processing, 89(12), 2435-2447. http://dx.doi.org/10.1016/j.sigpro.2009.03.014
  20. Peng, Y., Liu, F., & Liu, S. (2013). Active contours driven by normalized local image fitting energy. Concurrency And Computation: Practice And Experience, 26(5), 1200-1214. http://dx.doi.org/10.1002/cpe.3053
  21. Wang, L., He, L., Mishra, A., & Li, C. (2009). Active contours driven by local Gaussian distribution fitting energy. Signal Processing, 89(12), 2435-2447. http://dx.doi.org/10.1016/j.sigpro.2009.03.014
  22. Lankton, S. & Tannenbaum, A. (2008). Localizing Region-Based Active Contours. IEEE Transactions On Image Processing, 17(11), 2029-2039. http://dx.doi.org/10.1109/tip.2008.2004611
  23. Xu, X. & He, C. (2013). Implicit Active Contour Model with Local and Global Intensity Fitting Energies. Mathematical Problems In Engineering, 2013, 1-13. http://dx.doi.org/10.1155/2013/367086
  24. Liu, T., Xu, H., Jin, W., Liu, Z., Zhao, Y., & Tian, W. (2014). Medical Image Segmentation Based on a Hybrid Region-Based Active Contour Model. Computational And Mathematical Methods In Medicine, 2014, 1-10. http://dx.doi.org/10.1155/2014/890725
  25. Zaixin, Z., Lizhi, C, & Guangquan, C. (2014). Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation. IET Image Processing, 8(3), 150-161. http://dx.doi.org/10.1049/iet-ipr.2011.0128
  26. Shamsi, H. & Seyedarabi, H. (2012). A Modified Fuzzy C-Means Clustering with Spatial Information for Image Segmentation. IJCTE, 762-766. http://dx.doi.org/10.7763/ijcte.2012.v4.573
  27. Ji, Z., Sun, Q., & Xia, D. (2011). A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Computerized Medical Imaging And Graphics,35(5), 383-397. http://dx.doi.org/10.1016/j.compmedimag.2010.12.001
  28. Kashyap, R. & Gautam, P. (2013). Microarray Image Segmentation Using Improved GOGAC Method. International Journal Of Computer Science And Engineering, 2(4), 67-74.
  29. Chan, T. & Vese, L. (2001). Active contours without edges. IEEE Transactions On Image Processing, 10(2), 266-277. http://dx.doi.org/10.1109/83.902291
  30. Wang, L., He, L., Mishra, A., & Li, C. (2009). Active contours driven by local Gaussian distribution fitting energy. Signal Processing, 89(12), 2435-2447. http://dx.doi.org/10.1016/j.sigpro.2009.03.014
  31. Zhang, K., Song, H., & Zhang, L. (2010). Active contours driven by local image fitting energy. Pattern Recognition, 43(4), 1199-1206. http://dx.doi.org/10.1016/j.patcog.2009.10.010
  32. Chunming Li, Rui Huang, Zhaohua Ding, Gatenby, J., Metaxas, D., & Gore, J. (2011). A Level Set Method for Image Segmentation in the Presence of Intensity Inhomogeneities With Application to MRI.IEEE Transactions On Image Processing, 20(7), 2007-2016. http://dx.doi.org/10.1109/tip.2011.2146190
  33. Prasad, V. & Gopal, R. (2016). LHM Filter for Removal Salt and Pepper with Random Noise in Images. International Journal Of Computer Applications, 139(1), 9-15. http://dx.doi.org/10.5120/ijca2016908962
Index Terms

Computer Science
Information Sciences

Keywords

Active contour models Clustering based segmentation Energy based method Hybrid method Intensity irregularity Level set method Local image fitting Local binary fitting Medical image segmentation Region Based Segmentation.