We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Fingerprint Image Enhancement and Extraction of Minutiae and Orientation

by Shancymol Sojan, R. K. Kulkarni
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 145 - Number 4
Year of Publication: 2016
Authors: Shancymol Sojan, R. K. Kulkarni
10.5120/ijca2016910547

Shancymol Sojan, R. K. Kulkarni . Fingerprint Image Enhancement and Extraction of Minutiae and Orientation. International Journal of Computer Applications. 145, 4 ( Jul 2016), 13-19. DOI=10.5120/ijca2016910547

@article{ 10.5120/ijca2016910547,
author = { Shancymol Sojan, R. K. Kulkarni },
title = { Fingerprint Image Enhancement and Extraction of Minutiae and Orientation },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2016 },
volume = { 145 },
number = { 4 },
month = { Jul },
year = { 2016 },
issn = { 0975-8887 },
pages = { 13-19 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume145/number4/25265-2016910547/ },
doi = { 10.5120/ijca2016910547 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:47:52.242808+05:30
%A Shancymol Sojan
%A R. K. Kulkarni
%T Fingerprint Image Enhancement and Extraction of Minutiae and Orientation
%J International Journal of Computer Applications
%@ 0975-8887
%V 145
%N 4
%P 13-19
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Fingerprints are popular among the biometric – based systems due to ease of acquisition, uniqueness and availability. Fingerprint based biometric systems work by extracting and matching some features on the fingerprint. Due to errors in acquisition phase, it is possible that the scanned fingerprint image is not of a good quality and hence needs to be enhanced before being processed by the feature extracting module. Out of the various features that can be extracted, orientation and minutiae points are the most common ones to be used. This paper discusses some commonly used fingerprint enhancement techniques, the algorithms for minutiae and orientation extraction followed by the comparison of the algorithm on various databases.

References
  1. Delac, Kresimir, and Mislav Grgic. "A survey of biometric recognition methods." Electronics in Marine, 2004. Proceedings Elmar 2004. 46th International Symposium. IEEE, 2004.
  2. Maltoni, Davide, et al. Handbook of fingerprint recognition. Springer Science & Business Media, 2009
  3. Thai, Raymond. "Fingerprint image enhancement and minutiae extraction."The University of Western Australia (2003).
  4. Hanoon, Muna F. "Contrast fingerprint enhancement based on histogram equalization followed by bit reduction of vector quantization." International Journal of Computer Science and Network Security 11.5 (2011): 116-123.
  5. Hong, Lin, Yifei Wan, and Anil Jain. "Fingerprint image enhancement: algorithm and performance evaluation." Pattern Analysis and Machine Intelligence, IEEE Transactions on 20.8 (1998): 777-789.
  6. Greenberg, Shlomo, et al. "Fingerprint image enhancement using filtering techniques." Pattern Recognition, 2000. Proceedings. 15th International Conference on. Vol. 3. IEEE, 2000.
  7. Carneiro, Romulo Ferrer L., et al. "Techniques of Binarization, Thinning and Feature Extraction Applied to a Fingerprint System." International Journal of Computer Applications 103.10 (2014).
  8. Zhixin Shi , Venu Govindaraju, “A chaincode based scheme for fingerprint feature extraction”, Pattern Recognition Letters, vol. 27, 2006, pp. 462–468
  9. Zenzo, L. Cinque, and S. Levialdi, “Run-Based Algorithms for Binary Image Analysis and Processing”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 1, 1996, pp. 83-88.
  10. J Hwan Shin, H. Y. Hwang, S Chien, “Detecting fingerprint minutiae by run length encoding scheme”, Pattern Recognition vol. 39, 2005, pp. 1140-1154.
  11. S. Maddala, S. R. Tangellapally, J. S. Bartuněk and M. Nilsson, "Implementation and evaluation of NIST Biometric Image Software for fingerprint recognition," Biosignals and Biorobotics Conference (BRC), 2011 ISSNIP, pp.1-5.
  12. M. Gamassi, V. Pivri and F. Scotti, “Fingerprint local analysis for high performance minutiae extraction”, IEEE International Conference on Image Processing (ICIP) vol. 3, 2005, pp. 265-268.
  13. E. Alibeigi, M. T. Rizi, P. Behnamfar, "Pipelined minutiae extraction from fingerprint images," Electrical and Computer Engineering, 2009. CCECE '09. Canadian Conference on , vol., no., pp.239-242.
  14. J. C. Amengual, A. Juan, J. C. Prez, F. Prat, S. Sez, and J. M. Vilar, “Real-time minutiae extraction in fingerprint images”, in Proc. of the 6th Int. Conf. on Image Processing and its Applications, 1997, pp. 871–875.
  15. A. Farina, Z. M. Kovacs-Vajna, and A. Leone, “Fingerprint minutiae extraction from skeletonized binary images”, Pattern Recognition, vol. 32(5), 1999, pp. 877–889.
  16. J. Xudong and Y. Wei-Yun, “Fingerprint minutiae matching based on the local and global structures”, in Proc. of International Conference on Pattern Recognition (ICPR), vol. 2, 2000, pp. 1038–1041
  17. R. Bansal, P. Sehgal, P. Bedi, “Effective Morphological Extraction of True Fingerprint Minutiae based on the Hit or Miss Transform”, International Journal of Biometrics and Bioinformatics(IJBB), vol. 4, 2010, pp. 71-85.
  18. L. Jinxiang, H. Zhongyang, and C. Kap Luk, “Direct minutiae extraction from gray-level fingerprint image by relationship examination”, in International Conference on Image Processing(ICIP), vol. 2, 2000, pp. 427–430.
  19. X. Jiang, W.-Y. Yau, and W. Ser, “Detecting the fingerprint minutiae by adaptive tracing the gray-level ridge”, Pattern Recognition, vol. 34(5), 2001, 999–1013
  20. V. K. Sagar, D. B. L. Ngo, and K. C. K. Foo, “Fuzzy feature selection for fingerprint identification”, in proc. 29th Annual International Carnahan.Security Technology, 1995, pp 85-90.
  21. Hou, Zujun, Wei‐Yun Yau, and Yue Wang. "A review on fingerprint orientation estimation." Security and Communication Networks 4.5 (2011): 591-599.
  22. Biradar, Vidaydevi G., and H. Sarojadevi. "Fingerprint Ridge Orientation Extraction: A Review of State of the Art Techniques." International Journal of Computer Applications 91.3 (2014).
  23. Wieclaw, Lukasz. "Fingerprint Orientation Field Enhancement." Computer Recognition Systems 4. Springer Berlin Heidelberg, 2011. 33-40.
  24. WIECLAW, Lukasz. "Gradient based fingerprint orientation field estimation."Journal of Medical Informatics & Technologies 22 (2013): 203-207.
  25. Ke, Hongchang, Hui Wang, and Degang Kong. "An improved Gabor filtering for fingerprint image enhancement technology." 2nd
  26. Zhou, Jie, and Jinwei Gu. "A model-based method for the computation of fingerprints' orientation field." Image Processing, IEEE Transactions on 13.6 (2004): 821-835.
  27. Barham, Zain S., and Allam Mousa. "Fingerprint Recognition using MATLAB." (2011).
  28. Bansal, Roli, Priti Sehgal, and Punam Bedi. "Minutiae extraction from fingerprint images-A Review." arXiv preprint arXiv:1201.1422 (2011).
Index Terms

Computer Science
Information Sciences

Keywords

fingerprints minutiae orientation normalizaiton spurious minutiae cross numbering termination bifurcation direction field.