CFP last date
20 December 2024
Reseach Article

Soliton Soltuions of Nonlinear Evolutions Equation by using the Extended Exp (-φ(ξ)) Expansion Method

by Mostafa M. A. Khater, Emad H. M. Zahran
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 145 - Number 3
Year of Publication: 2016
Authors: Mostafa M. A. Khater, Emad H. M. Zahran
10.5120/ijca2016910516

Mostafa M. A. Khater, Emad H. M. Zahran . Soliton Soltuions of Nonlinear Evolutions Equation by using the Extended Exp (-φ(ξ)) Expansion Method. International Journal of Computer Applications. 145, 3 ( Jul 2016), 1-5. DOI=10.5120/ijca2016910516

@article{ 10.5120/ijca2016910516,
author = { Mostafa M. A. Khater, Emad H. M. Zahran },
title = { Soliton Soltuions of Nonlinear Evolutions Equation by using the Extended Exp (-φ(ξ)) Expansion Method },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2016 },
volume = { 145 },
number = { 3 },
month = { Jul },
year = { 2016 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume145/number3/25255-2016910516/ },
doi = { 10.5120/ijca2016910516 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:48:04.924113+05:30
%A Mostafa M. A. Khater
%A Emad H. M. Zahran
%T Soliton Soltuions of Nonlinear Evolutions Equation by using the Extended Exp (-φ(ξ)) Expansion Method
%J International Journal of Computer Applications
%@ 0975-8887
%V 145
%N 3
%P 1-5
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this research, we employ the extended exp(-φ(ξ))expansion method for the first time to obtain the exact and solitary wave solutions of the (3+1)-Dimensional Yu-Toda-Sasa-Fukuyama Equation. We obtain the wide range of exact and solitary wave solutions of distinct physical structure.

References
  1. M. J. Ablowitz, H. Segur, Solitions and Inverse Scattering Transform, SIAM, Philadelphia 1981.
  2. Emad H. M. Zahran and Mostafa M.A. Khater, Exact Traveling Wave Solutions for the System of Shallow Water Wave Equations and Modified Liouville Equation Using Extended Jacobian Elliptic Function Expansion Method. American Journal of Computational Mathematics (AJCM) Vol.4 No.5 2014.
  3. Emad H. M. Zahran and Mostafa M.A. Khater, The modified simple equation method and its applications for solving some nonlinear evolutions equations in mathematical physics. Jokull journal- Vol. 64. Issue 5 - May 2014.
  4. A. M.Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004) 714-723.
  5. Mostafa M. A. Khater, Emad H. M. Zahran, New solitary wave solution of the generalized Hirota-Satsuma couple KdV system, International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August (2015).
  6. Mahmoud A.E. Abdelrahman and Mostafa M.A. Khater, Traveling Solitary Wave Solutions for the Symmetric Regularized Long-Wave Equation, JOURNAL OF ADVANCES IN MATHEMATICS, Vol .11, No.8, 5520- 5528 (December 0 7 , 2015).
  7. Mostafa M.A. Khater and Emad H. M. Zahran, Modified extended tanh function method and its applications to the Bogoyavlenskii equation, Applied Mathematical Modelling, 40, 1769-1775 (2016).
  8. A. M. Wazwaz, Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method, Comput. Math. Appl., 50 (2005) 1685-1696.
  9. A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modelling, 40 (2004) 499- 508.
  10. C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A 224 (1996) 77-84.
  11. E. Fan, H.Zhang, A note on the homogeneous balance method, Phys. Lett. A 246 (1998) 403-406.
  12. M. L. Wang, Exct solutions for a compound KdV-Burgers equation, Phys. Lett. A 213 (1996) 279-287.
  13. M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos Solitons Fractals, 31 (2007) 95-104.
  14. Y. J. Ren, H. Q. Zhang, A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Chaos Solitons Fractals, 27 (2006) 959-979.
  15. J. L. Zhang, M. L. Wang, Y. M. Wang, Z. D. Fang, The improved F-expansion method and its applications, Phys.Lett.A 350 (2006) 103-109.
  16. J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals 30 (2006) 700-708.
  17. H. Aminikhad, H. Moosaei, M. Hajipour, Exact solutions for nonlinear partial differential equations via Exp-function method, Numer. Methods Partial Differ. Equations, 26 (2009) 1427-1433.
  18. Z. Y. Zhang, New exact traveling wave solutions for the nonlinear Klein-Gordon equation, Turk. J. Phys., 32 (2008) 235- 240.
  19. M. L. Wang, J. L. Zhang, X. Z. Li, The (G 0 G )- expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics, Phys. Lett. A 372 (2008) 417-423.
  20. S. Zhang, J. L. Tong, W.Wang, A generalized (G'/G )- expansion method for the mKdv equation with variable coefficients, Phys. Lett. A 372 (2008) 2254-2257.
  21. Mostafa M. A. Khater, On the New Solitary Wave Solution of the Generalized Hirota-Satsuma Couple KdV System, GJSFR-A Volume 15 Issue 4 Version 1.0 (2015).
  22. Emad H. M. Zahran and Mostafa M.A. Khater, Exact solutions to some nonlinear evolution equations by using (G'/G) - expansion method, Jokull journal- Vol. 64. Issue 5 - May 2014.
  23. Mahmoud A.E. Abdelrahman and Mostafa M.A. Khater, Traveling Wave Solutions For The Couple Boiti Leon- Pempinelli System By Using Extended Jacobian Elliptic Function Expansion Method, JOURNAL OF ADVANCES IN PHYSICS Vol. 11, No. 3, 3134-3138 (December 0 7 , 2015).
  24. Emad H. M. Zahran & Mostafa M. A. Khater, Extended Jacobian Elliptic Function Expansion Method and Its Applications in Biology. Applied Mathematics, 6, 1174- 1181 (2015).
  25. S. Liu, Z. Fu, S. Liu, Q.Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289 (2001) 69-74.
  26. Mahmoud A.E. Abdelrahman and Mostafa M.A. Khater, the Exp (Φ(ξ)) - Expansion Method and its Application for Solving Nonlinear Evolution Equations. International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064, Volume 4 Issue 2, 2143-2146. February (2015).
  27. Mahmoud A.E. Abdelrahman, Emad H. M. Zahran and Mostafa M.A. Khater, Exact Traveling Wave Solutions for Power law and Kerr law non Linearity Using the Exp(Φ(ξ))- expansion Method, Volume 14 Iss. 4 Version 1.0, 2014.
  28. Mahmoud A.E. Abdelrahman, Emad H. M. Zahran and Mostafa M.A. Khater, the exp (Φ(ξ)) -Expansion Method and Its Application for Solving Nonlinear Evolution Equations. International Journal of Modern Nonlinear Theory and Application, 4, 37-47(2015).
  29. MA Khater, Mostafa. ”Extended exp ( ())-Expansion method for Solving the Generalized Hirota-Satsuma Coupled KdV System.” Global Journal of Science Frontier Research 15.7 (2015).
  30. Zhang, Sheng, and Hong-Qing Zhang. ”A transformed rational function method for (3+ 1)-dimensional potential YuTodaSasaFukuyama equation.” Pramana 76.4 (2011): 561-571.
  31. Hu, Yangjie, Hanlin Chen, and Zhengde Dai. ”New kink multi-soliton solutions for the (3+ 1)-dimensional potential- YuTodaSasaFukuyama equation.” Applied Mathematics and Computation 234 (2014): 548-556.
  32. S. J. Yu, K. Toda, N. Sasa and T. Fukuyama, N-soliton solutions to Bogoyavknskii-Schiff equation and a guest for the soliton solutions in (3 + 1)-dimensions, J. Phys. A: Math. And Gene. 31 (1998) 3337-3347.
Index Terms

Computer Science
Information Sciences

Keywords

Extended exp(-φ(ξ ))-expansion method The (3+1)- Dimensional Yu-Toda-Sasa-Fukuyama equation Traveling wave solutions Solitary wave solutions.