CFP last date
20 January 2025
Reseach Article

A Review on Tuning of Extended Kalman Filter using Optimization Techniques for State Estimation

by Navreet Kaur, Amanpreet Kaur
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 145 - Number 15
Year of Publication: 2016
Authors: Navreet Kaur, Amanpreet Kaur
10.5120/ijca2016910177

Navreet Kaur, Amanpreet Kaur . A Review on Tuning of Extended Kalman Filter using Optimization Techniques for State Estimation. International Journal of Computer Applications. 145, 15 ( Jul 2016), 1-5. DOI=10.5120/ijca2016910177

@article{ 10.5120/ijca2016910177,
author = { Navreet Kaur, Amanpreet Kaur },
title = { A Review on Tuning of Extended Kalman Filter using Optimization Techniques for State Estimation },
journal = { International Journal of Computer Applications },
issue_date = { Jul 2016 },
volume = { 145 },
number = { 15 },
month = { Jul },
year = { 2016 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume145/number15/25351-2016910177/ },
doi = { 10.5120/ijca2016910177 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:48:53.352142+05:30
%A Navreet Kaur
%A Amanpreet Kaur
%T A Review on Tuning of Extended Kalman Filter using Optimization Techniques for State Estimation
%J International Journal of Computer Applications
%@ 0975-8887
%V 145
%N 15
%P 1-5
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

State estimation is the common problem in every area of engineering. There are different filters used to overcome the problem of state estimation like Kalman filter, Particle filters etc. Kalman Filter is popular when the system is linear but when the system is highly non-linear then the different derivatives of Kalman Filter are used like Extended Kalman Filter (EKF), Unscented Kalman filter. But these estimation techniques require tuning of process and noise covariance matrices. The different optimization techniques are used to tune the filter parameters of EKF. In this paper, various optimization techniques have been studied for non-linear state estimation based on EKF.

References
  1. Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on signal processing, 50(2), 174-188.
  2. Van Der Heijden, F., Duin, R., De Ridder, D., and Tax, D. M. 2005.Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons.
  3. Asmar, D. M., and Eslinger, G. J. 2012. Nonlinear programming approach to filter tuning.
  4. Ribeiro, M. I. 2004. Kalman and extended kalman filters: Concept, derivation and properties. Institute for Systems and Robotics, 43.
  5. Karasalo, M., and Hu, X. 2011. An optimization approach to adaptive Kalman filtering. Automatica, 47(8), 1785-1793.
  6. BøLviken, E., Acklam, P. J., Christophersen, N., and StøRdal, J. M. 2001. Monte Carlo filters for non-linear state estimation. Automatica, 37(2), 177-183.
  7. Xiong, K., Zhang, H., and Liu, L. 2008. Adaptive robust extended Kalman filter for nonlinear stochastic systems. IET Control Theory & Applications,2(3), 239-250.
  8. Kandepu, R., Foss, B., and Imsland, L. 2008. Applying the unscented Kalman filter for nonlinear state estimation. Journal of Process Control,18(7), 753-768.
  9. El-Emary, I. M., and El-Kareem, M. A. 2008. Towards using genetic algorithm for solving nonlinear equation systems. World Applied Sciences Journal,5(3), 282-289.
  10. Ji, C., Zhang, Y., Tong, M., and Yang, S. 2008, September. Particle filter with swarm move for optimization. In International Conference on Parallel Problem Solving from Nature (pp. 909-918). Springer Berlin Heidelberg.
  11. Kaur, R., Kumar, R., Bhondekar, A. P., and Kapur, P. 2013. Human opinion dynamics: An inspiration to solve complex optimization problems. Scientific reports, 3.
  12. Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. 2009. GSA: a gravitational search algorithm. Information sciences, 179(13), 2232-2248.
  13. Zhao, J., and Li, Z. 2010. Particle filter based on Particle Swarm Optimization resampling for vision tracking. Expert Systems with Applications, 37(12), 8910-8914.
  14. Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. 2011. Filter modeling using gravitational search algorithm. Engineering Applications of Artificial Intelligence, 24(1), 117-122.
  15. Sudin, S., Nawawi, S. W., Faiz, A., Abidin, Z., Rahim, M. A. A., Khalil, K., Ibrahim, Z., and Yusof, Z. M. 2014. A modified gravitational search algorithm for discrete optimization problem. IJSSST, 15, 51-55.
  16. Mallick, S., Ghoshal, S. P., Acharjee, P., and Thakur, S. S. 2013. Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm. International Journal of Electrical Power & Energy Systems, 52, 254-265.
  17. Gu, B., and Pan, F. 2013. Modified gravitational search algorithm with particle memory ability and its application. International Journal of Innovative Computing, Information and Control, 9(11), 4531-4544.
  18. Talatahari, S., Mohaggeg, H., Najafi, K., and Manafzadeh, A. 2014. Solving parameter identification of nonlinear problems by artificial bee colony algorithm. Mathematical Problems in Engineering, 2014.
  19. Mirjalili, S., Wang, G. G., and Coelho, L. D. S. 2014. Binary optimization using hybrid particle swarm optimization and gravitational search algorithm.Neural Computing and Applications, 25(6), 1423-1435.
  20. György, K., Kelemen, A., and Dávid, L. 2014. Unscented kalman filters and particle filter methods for nonlinear state estimation. Procedia Technology,12, 65-74.
  21. Jatoth, R. K., and Kumar, T. K. Hybrid GA-PSO Based Tuning of Unscented Kalman Filter for Bearings Only Tracking. International Journal of Information and Computation Technology, ISSN, 0974-2239.
  22. Hussain, S., Poddar, S., Ailneni, S., Kumar, V., and Kumar, A. 2015, May. Tuning of Extended Kalman filter using Human Opinion Dynamics based optimization. In Industrial Instrumentation and Control (ICIC), 2015 International Conference on (pp. 1518-1523). IEEE.
Index Terms

Computer Science
Information Sciences

Keywords

Gravitational Search Algorithm Extended Kalman Filter state estimation Tuning of EKF.