CFP last date
20 December 2024
Reseach Article

Static Gestures Recognition for Brazilian Sign Language with Kinect and Eigenhands

by Sérgio Bessa Carneiro, Edson D. F. De M. Santos, Talles M. De A. Barbosa, José O. Ferreira, Adson F. Da Rocha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 144 - Number 7
Year of Publication: 2016
Authors: Sérgio Bessa Carneiro, Edson D. F. De M. Santos, Talles M. De A. Barbosa, José O. Ferreira, Adson F. Da Rocha
10.5120/ijca2016910492

Sérgio Bessa Carneiro, Edson D. F. De M. Santos, Talles M. De A. Barbosa, José O. Ferreira, Adson F. Da Rocha . Static Gestures Recognition for Brazilian Sign Language with Kinect and Eigenhands. International Journal of Computer Applications. 144, 7 ( Jun 2016), 35-38. DOI=10.5120/ijca2016910492

@article{ 10.5120/ijca2016910492,
author = { Sérgio Bessa Carneiro, Edson D. F. De M. Santos, Talles M. De A. Barbosa, José O. Ferreira, Adson F. Da Rocha },
title = { Static Gestures Recognition for Brazilian Sign Language with Kinect and Eigenhands },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2016 },
volume = { 144 },
number = { 7 },
month = { Jun },
year = { 2016 },
issn = { 0975-8887 },
pages = { 35-38 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume144/number7/25195-2016910492/ },
doi = { 10.5120/ijca2016910492 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:47:02.785627+05:30
%A Sérgio Bessa Carneiro
%A Edson D. F. De M. Santos
%A Talles M. De A. Barbosa
%A José O. Ferreira
%A Adson F. Da Rocha
%T Static Gestures Recognition for Brazilian Sign Language with Kinect and Eigenhands
%J International Journal of Computer Applications
%@ 0975-8887
%V 144
%N 7
%P 35-38
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The automatic recognition of sign languages to help hearing impaired people is an area that has been explored for quite some time. However, this is still a practical problem due to the complexity involved making it a big challenge. Environments with complex backgrounds and different lighting conditions, hinders the recognition of hand gestures and other expressions when performed. The use of devices that are developed to increase the man machine interaction for entertainment, such as the Microsoft Kinect, has been shown to be promising in gesture recognition due to the amount of resources that it provides in the development of applications involving movements. The ease in detecting users and regions of interest such as hands, greatly reduces the complexity in the process of capturing gestures made by a user in complex environments. Therefore, this paper proposes an application for users of the Brazilian Sign Language (Libras), which brings a main feature of voice generation based on static hand gestures. The application utilizes the Kinect technology concomitantly with the eigenhands technique linked with the process of lighting normalization in the gesture images. The preliminary results obtained through testing had an accuracy reaching up to 89% in the static gesture recognition of the language LIBRAS.

References
  1. Quadros, Ronice Müller. “Estudos de línguas de sinais: uma entrevista com Ronice Müller de Quadros”. ReVEL, vol. 10, n. 19, 2012.
  2. P. Lokhande, R. Prajapati e S. Pansare, “Data Gloves for Sign Language Recognition System”, In: International Journal of Computer Applications, National Conference on Emerging Trends in Advanced Communication Technologies, 2015.
  3. S. Garg, S. Singhal e S. Kumari. “A review paper on Hand Gesture Recognition and Voice conversion system”. In: International Journal of Scientific &Engineering Research, Volume 6, Issue 10, October-2015.
  4. A.Z Shukor, M.F Miskon, et al. “A New Data Glove Approach for Malaysian Sign Language Detection”. IEEE International Symposium on Robotics and Intelligent Sensors, Volume 76, 2015, p. 60–67.
  5. Hernandez-Rebollar, J.L, Lindeman, R.W Kyriakopoulos. “A Multi-Class Pattern Recognition System for Practical Finger Spelling Translation”, Fourth IEEE Int’l Conference on Multimodal Interfaces, Pittsburgh, USA, October 14-16, 2002, pp. 185-190.
  6. S. Amitkumar, R.Kagalkar. “Advanced Marathi Sign Language Recognition using Computer Vision”. In: International Journal of Computer Applications, Volume 118 – No. 13, May 2015.p. 2-7.
  7. I.L.O. Bastos, M.F. Angelo, A.C. Loula. “Recognition of Static Gestures applied to Brazilian Sign Language (Libras)” (2016, 11, April). [Online]. In: http://sigrapi.sidinpe.br/col/sid.inpe.br/sigrapi/2015/06.18.19.06/doc/PID3766353.pdf.
  8. A. Thalange and S. Dixit. “Sign Language Alphabets Recognition Using Wavelet Transform”. In: Conference on Intelligent Computing, Electronics Systems and Information Technology. Kuala Lumpur (Malaysia) Aug 25-26, 2015.
  9. F. M.P. Neto, et. al.“Extreme Learning Machine for Real Time Recognition of Brazilian Sign Language”.In: IEEE International Conference on Systems, Man, and Cybernetics, 2015.
  10. M.M. Mendonça, J. G. Denipote,  R.A. S. Fernandes,  M.S.V. Paiva. “Novo Método para Normalização da Iluminação em Imagens de Face”. Biblioteca Brasileira de Computação, 2008.
  11. R. C. Gonzalez and R E. Woods. Digital Image Processing. 3th ed. Pearson International Edition, 2009.
  12. M. Turk and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neuroscience, vol.3, no. 1, pp. 71-86, 1991
  13. Jolliffe IT. Principal Component Analysis. 2th ed. New York: Springer, 2002.
  14. Alfabeto Libras (11 de Abril 2016). [Online]. In: http://www.surdo.com.br/alfabeto-libras.html.
Index Terms

Computer Science
Information Sciences

Keywords

Microsoft Kinect Brazilian Sign Language.