CFP last date
20 January 2025
Reseach Article

Secure Cryptosystem based on Braiding/Entanglement of Pauli 3/2 Matrices

by D. Sravana Kumar, P. Sirisha, Ch. Suneetha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 143 - Number 9
Year of Publication: 2016
Authors: D. Sravana Kumar, P. Sirisha, Ch. Suneetha
10.5120/ijca2016910354

D. Sravana Kumar, P. Sirisha, Ch. Suneetha . Secure Cryptosystem based on Braiding/Entanglement of Pauli 3/2 Matrices. International Journal of Computer Applications. 143, 9 ( Jun 2016), 37-42. DOI=10.5120/ijca2016910354

@article{ 10.5120/ijca2016910354,
author = { D. Sravana Kumar, P. Sirisha, Ch. Suneetha },
title = { Secure Cryptosystem based on Braiding/Entanglement of Pauli 3/2 Matrices },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2016 },
volume = { 143 },
number = { 9 },
month = { Jun },
year = { 2016 },
issn = { 0975-8887 },
pages = { 37-42 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume143/number9/25108-2016910354/ },
doi = { 10.5120/ijca2016910354 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:45:55.866014+05:30
%A D. Sravana Kumar
%A P. Sirisha
%A Ch. Suneetha
%T Secure Cryptosystem based on Braiding/Entanglement of Pauli 3/2 Matrices
%J International Journal of Computer Applications
%@ 0975-8887
%V 143
%N 9
%P 37-42
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

As the internet is the basic means of communication nowadays,secure transmission of the sensitive information to the genuine recipient has become a Herculean task. Cryptography is an essential tool for protecting information in computer systems. This paper presents a novel encryption scheme using Braiding/Entanglement of Pauli Spin 3/2 matrices.

References
  1. Lester Hill, “Concerning certain linear transformation apparatus of cryptography”, The American Mathematical monthly, March 1931, pp 135-154.
  2. Richard Liboff, “Introductory quantum mechanics, IV Edition, Addison Wesley, 2002.
  3. J. J. Sakurai, “Modern quantum mechanics”, Addidon Wesley, 1985.
  4. Steward EG ,“Quantum mechanics: its early development and the road to entanglement”, 2008,Imperial College Press. ISBN 978-1860949784.
  5. Jaeger G, “Entanglement, information, and the interpretation of quantum mechanics”, Heildelberg 2009: Springer, ISBN 978-3-540-92127-1.
  6. Gould HW., “A history of the Fibonacci Q-matrix and a higher-dimensional problem, the Fibonacci quart.” 1981(19),250-7.
  7. Hoggat VE., “Fibonacci and Lucas numbers”, Palo Alto, CA: Houghton-Mifflin, 1969.
  8. Stakhov A.P. , “The golden matrices and a new kind of cryptography”, Chaos, Solutions and Fractals, 2006.
  9. B.Vellainkannan, Dr. V. Mohan, V. Gnanaraj “A Note on the application of Quadratic forms in Coding Theory with a note on Security”, International Journal Computer Tech. Applications Vol 1(1) 78-87.
  10. Bibhudendra Acharya , Saroj Kumar Panigrahy, Sarat Kumar Patra , and Ganapati Panda, “Image Encryption using Advanced Hill cipher Algorithm”, International Journal of Recent Trends in Engineering, Vol. 1, No. 1, May 2009.
  11. Birendra Goswami, Dr.S.N.Singh “Enhancing Security in Cloud computing using Public Key Cryptography with Matrices” International Journal of Engineering Research and Applications Vol. 2, Issue 4, July-August 2012, pp.339-344 339.
  12. Ayan Mahalanobis, “Are Matrices Useful in Public-Key Cryptography?”International Mathematical Forum, Vol. 8, 2013, no. 39, 1939 - 1953 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.310187.
  13. Asrjen K. Lenstra and Eric R. Verheul, “Selecting cryptographic key size”, Journal of Cryptology, 2001, Volume-14, Number 4, pages 255-293.
Index Terms

Computer Science
Information Sciences

Keywords

Braiding/Entanglement Encryption and Decryption