CFP last date
20 January 2025
Reseach Article

Matrix Sort - A Parallelizable Sorting Algorithm

by S. Kavitha, Vijay V., Saketh A. B.
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 143 - Number 9
Year of Publication: 2016
Authors: S. Kavitha, Vijay V., Saketh A. B.
10.5120/ijca2016910341

S. Kavitha, Vijay V., Saketh A. B. . Matrix Sort - A Parallelizable Sorting Algorithm. International Journal of Computer Applications. 143, 9 ( Jun 2016), 1-6. DOI=10.5120/ijca2016910341

@article{ 10.5120/ijca2016910341,
author = { S. Kavitha, Vijay V., Saketh A. B. },
title = { Matrix Sort - A Parallelizable Sorting Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2016 },
volume = { 143 },
number = { 9 },
month = { Jun },
year = { 2016 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume143/number9/25102-2016910341/ },
doi = { 10.5120/ijca2016910341 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:45:51.980054+05:30
%A S. Kavitha
%A Vijay V.
%A Saketh A. B.
%T Matrix Sort - A Parallelizable Sorting Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 143
%N 9
%P 1-6
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Sorting algorithms are the class of algorithms that result in the ordered arrangement of a list of given elements. The arrangement can be in ascending or descending order based on the requirement given. Time complexity, space complexity and optimality are used to assess the algorithms. In this paper, a new sorting algorithm called Matrix sort is introduced. This algorithm aims to sort the elements of a matrix without dis- pturbing the matrix structure. It has a time complexity of O(n√nlog√n) and hence takes lesser time than existing O(n2) algorithms. A pseudocode for the algorithm is provided and the best, average and worst case time complexities are derived.

References
  1. Donald Knuth. The art of Computer Programming, Volume-3: Sorting and Searching, Third edition. Addison-Wesley, Reading, Massachusetts, 1993.
  2. Hoare, C.A.R.(1961). Algorithm 63,Partition; Algorithm 64,Quicksort; Communications of the ACM, Vol.4, p.321
  3. Robert Sedgewick, Kevin Wayne. Algorithms (4th ed). Annalen der Physik, 322(10):891-921, 1905.
  4. Comparison of algorithms. https://en.wikipedia.org/wiki/Sorting_algorithm
  5. Anany Levitin. Introduction to the Design & Analysis of Algorithms, 2nd Edition.
  6. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++(Third edition). Addison-Welsey (2007)
  7. Robert Sedgewick(1978). Implementing Quicksort programs. Communications of the ACM 21
  8. Daniel H. Greene, Donald E. Knuth. Mathematics for the analysis of algorithms. Modern Birkhüser Classics (2007)
  9. Robert Sedgewick (1998). Algorithms in C: Fundamentals, Data Structures, Sorting, Searching, Parts 1-4 (3rd ed.). Pearson Education
  10. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C.Stein (2009). Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill.
  11. N. G. de Bruijn(1958). Asymptotic Methods in Analysis. Amsterdam: North-Holland. pp. 5â?A ¸ S7.
  12. Papadimitriou, Christos H.(1994). Computational complexity. Reading, Mass.: Addison-Wesley.
Index Terms

Computer Science
Information Sciences

Keywords

Matrix sort Top-down Parallelizable sorting