CFP last date
20 December 2024
Reseach Article

Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions

by Avneet Saini
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 143 - Number 7
Year of Publication: 2016
Authors: Avneet Saini
10.5120/ijca2016910265

Avneet Saini . Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions. International Journal of Computer Applications. 143, 7 ( Jun 2016), 46-56. DOI=10.5120/ijca2016910265

@article{ 10.5120/ijca2016910265,
author = { Avneet Saini },
title = { Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions },
journal = { International Journal of Computer Applications },
issue_date = { Jun 2016 },
volume = { 143 },
number = { 7 },
month = { Jun },
year = { 2016 },
issn = { 0975-8887 },
pages = { 46-56 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume143/number7/25093-2016910265/ },
doi = { 10.5120/ijca2016910265 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:45:45.914001+05:30
%A Avneet Saini
%T Structural Modeling and Conformational Analysis of Aromatic Polypeptoid Models Confined to Different Environmental Conditions
%J International Journal of Computer Applications
%@ 0975-8887
%V 143
%N 7
%P 46-56
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Conformations of achiral and chiral aromatic homo-polypeptoids of Nphe, Nspe and Nrpe were studied by quantum mechanics and molecular dynamics approaches. The amide bond geometry in model peptoids Ac-X-NMe2 could be both cis and trans and the Nphe peptoids adopted degenerate conformations of opposite handedness with Φ, Ψ values of ~ ± 120º, ± 150º with trans amide bond geometry. This degeneracy was lifted with increase in chain length; in favor of the structure with Φ = -120º, Ψ = -150º. Polypeptoids of Nspe and Nrpe with and without protecting groups populated states with Φ, Ψ values of ~ 110º, 155º & -110º, -165º respectively with trans amide bond geometry. Simulation studies in water revealed that with protecting groups peptoid Ac-(Nspe/Nrpe)5-NMe2 populated with cis amide bond geometry in PP type I and inverse PP type I helices respectively due to interactions between the solvent molecules and carbonyl oxygens of the backbone. Without protecting groups these polypeptoids populated poly-L-proline type II conformations. In DMSO these peptoids were shown to populate in PP type-I and inverse PP type-I helices and without protecting groups they could be realized in PP type-I as well as inverse PP type-I conformation whereas the peptoid -Nrpe6-NH2 could be realized in inverse PP type-I conformation. Analysis of simulation results as a function of time ruled out amide bond inter-conversions between cis and trans geometry. Hence, like polyproline peptoids can also be exploited as molecular spacers.

References
  1. Miller S M, Simon R J, Ng S, Zuckermann R N, Kerr J M & Moos W H (1995) Drug. Dev. Res. 35, 20-32
  2. Kwon Y & Kodadek T (2007) J. Am. Chem. Soc. 129, 1508-1509
  3. Miller S M, Simon R J, Ng S, Zuckermann R N, Kerr J M & Moos W H (1994) Bioorg. Med. Chem. Lett. 4, 2657–2662
  4. Proulx C, Yoo S, Connolly M D & Zuckermann R N (2015) J. Org. Chem., Article ASAP
  5. Huang M L, Benson M A, Shin S B Y, Torres V J & Kirshenbaum K (2013) Eur. J. Org. Chem. 2013, 3560–3566
  6. Huang W, Seo J, Willingham S B, Czyzewski, A M, Gonzalgo M L, Weissman I L & Barron A E (2014) PLOSOne 9, e90397
  7. Mojsoska B, Zuckermann R N & Jenssena H (2015) Antimicrob. Agents Chemother. 59, 4112-20
  8. Patch J A & Barron A E (2003) J. Am. Chem. Soc. 123, 12092-12093
  9. Seurynck S L, Patch J A & Barron A E (2005) Chem. Biol. 12, 77-88
  10. Rossa T M, Zuckermann R N, William C R & Frey H (2008) Neuroscience Letters 439, 30–33
  11. Statz A R, Meagher R J, Barron A E & Messersmith P B (2005) J. Am. Chem. Soc.127, 7972-7973
  12. Statz A R, Meagher R J, Barron A E & Messersmith P B (2008) Soft Matter 4, 131–139
  13. Lau K H A, Ren C, Sileika T S, Park S H, Szleifer I & Messersmith P B (2012) Langmuir 28, 16099−16107
  14. Ham H O, Park S H, Kurutz J W, Szleifer I G & Messersmith P B (2013) J. Am. Chem. Soc. 135, 13015–13022
  15. Wender P A, Mitchell D J, Pattabiraman K, Pelkey E T, Steinman L & Rothbard J B (2000) Proc. Natl. Acad. Sci. USA. 97, 13003–13008
  16. Schröder T, Schmitz K, Niemeier N, Balaban T S, Krug H F, Schepers U & Bräse S (2007) Bioconjugate Chem. 18, 342–354
  17. Nnanabu E & Burgess K (2006) Org. Lett. 8,1259-1262
  18. Shin S B Y, Yoo B, Todaro L J & Kirshenbaum K (2007) J. Am. Chem. Soc.129, 3218-3225
  19. Pokorski J K, Jenkins L M M, Feng H, Durell S R, Bai Y & Appella D H (2007) Org. Lett. 9, 2381-2383
  20. Nandel F S & Jaswal R R (2013) Ind J. Biochem. Biophys. 51, 7-18
  21. Maigret B, Perahia D & Pullman B (1970) J. Theor. Biol. 29, 275-291
  22. Subramanian E & Parthasarathy R (1989) Int. J. Pept. Prot. Res. 33, 345-347
  23. Armand P, Kirshenbaum K, Falicov A, Dunbarck Jr R L, Dill K A, Zuckermann R N & Cohen F E (1997) Folding and Design 2, 369-375
  24. Baldauf C, Günther R & Hofmann H J (2006) Phys. Biol. 3, S1–S9
  25. Zuckermann R N, Kerr J M, Kent S B H & Moost W H (1992) J. Am. Chem. Soc. 114, 10646-10647
  26. Sui Q, Borchardt D & Rabenstein D L (2007) J. Am. Chem. Soc. 129, 12042-12048
  27. Wu C W, Kirshenbaum K, Sanborn T J, Huang K, Zuckermann R N, Barron A E, Patch J A, Dill K A (2003) J. Am. Chem. Soc. 125, 13525-13530
  28. Wu C W, Sanborn T J, Huang K, Zuckermann R N & Barron A E (2001) J. Am. Chem. Soc. 123, 6778-6784
  29. Wu C W, Sanborn T J, Zuckermann R N & Barron A E (2001) J. Am. Chem. Soc. 123, 2958-2963
  30. Kirshenbaum K, Zuckermann R N, Dill K A, Barron A E, Armand P, Goldsmith R & Cohen E (1998). Proc. Natl. Acad. Sci. 95, 4303-4308
  31. Jordan P A, Paul B, Butterfoss G L, Renfrew P D, Bonneau R & Kirshenbaum K (2011) Biopoymers (Peptide Science) 96, 617-625
  32. Shah N H, Butterfoss G L, Nguyen K, Yoo B, Bonneau R, Rabenstein D L & Kirshenbaum K (2008) J. Am. Chem. Soc. 130, 16622-16632
  33. Zhang S, Prabpai S, Kongsaeree P & Arvidsson P I (2006) Chem. Commun 497-499
  34. Fowler S A, Luechapanichkul R & Blackwell H E (2009) J. Org. Chem. 74, 1440–1449
  35. Stringer J R, Crapster J A, Guzei I A & Blackwell H E (2011) Biopolymer peptide Science 96, 604-616
  36. Stringer J R, Crapster J A, Guzei I A & Blackwell H E (2010) J. Org. Chem. 75, 6068-6078
  37. Stringer J R, Crapster J A, Guzei I A & Blackwell H E (2011) J. Am. Chem. Soc. 133, 15559-15567
  38. Qiu Y, Chen P, Guo P, Li Y & Liu M (2008) Advanced Materials 20, 2908-2913
  39. Moretto A, Peggion C, Formaggio F, Crisma M, Kaptein B, Boxteman Q B & Toniolo C (2005) Chirality 17, 481-487
  40. Pullman B & Pullman A (1974) Adv. Protein Chem. 28, 347-526
  41. Lawrence R P & Thompson C(1982) J. Mol. Str: Theochem. 88, 37-43
  42. Aleman C & Casanovas J (1994) Chem Soc Perkins Trans 2, 563-568
  43. Aleman C & Casanovas J (1995) Biopolymers 36, 71-82
  44. Nandel F S & Khare B (2005) Biopolymers 77, 63-73
  45. Nandel F S, Malik N, Singh B & Jain D V S (1999) Int. J. Quant. Chem. 72, 15-23
  46. Nandel F S, Malik N, Singh B & Virdi M (1999) Indian J. Biochem. Biophys. 36, 195-203
  47. Weiner S J, Singh U C, Donell T J O & Kollman P A (1984) J. Am. Chem. Soc. 106, 6243-6245
  48. Mohle K & Hoffman H J (1998) J. Pept. Res. 51, 19-28
  49. Aduzbei A A & Sternberg J E (1993) J. Mol. Biol. 229, 472-493
  50. Adzubei A A, Eisenmenger F, Tumanyan V G, Zinke M & Esipova NG (1987) Biophys Biochem Res Commun 146, 934-938
  51. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E & Berendsen H J C (2005) J. Comp. Chem. 26, 1701–1718
  52. Butterfoss G L, Renfren P D, Kuhlman B & Kirshenbaum K A (2009) J. Am. Chem. Soc. 131, 16798-16807
  53. Schuettelkopf A W & Van Aalten D M F (2004) Acta Crystallogr. D60, 1355-1363
  54. Berendsen H J C, Postma, J P M, Van Gunsteren W F & Hermans J (1981) In B. Pullman, editor, Intermolecular Forces, Dordrecht: D. Reidel Publishing Company,331–342
  55. Liu H, Muller-Plathe F & Van Gunsteren W F (1995) J. Am. Chem. Soc. 117, 4363-4366
  56. Van Gunsteren W F, Billeter S R, Eising A A, Hünenberger P H, Krüger P, Mark A E, Scott W R P & Tironi I G (1996) Biomolecular Simulation: The GROMOS96 manual and user guide, Zürich, Switzerland: Hochschulverlag AG an der ETH Zürich
  57. TingGuang S, Ming L, WeiZu C & CunXin W (2010) Sci China Life Sci 53, 620-630
  58. Hockney R W & Eastwood J W (1981) Computer simulation using particles, New York, McGraw-Hill
  59. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) J. Chem. Phys. 81: 3684–3690
  60. Hess B, Bekker H, Berendsen H J C & Fraaije J G E M (1997) J. Comp. Chem. 18, 1463–1472
  61. Essmann U, Perera L, Berkowitz M L, Darden T, Lee H & Pedersen L G (1995) J. Chem. Phys.103, 8577–8592
  62. Voelz V A, Dill K A & Chorny I (2011) Peptide Science 96, 639-650
  63. Zi H F & Zang H X (2005) J. Mol. Structure (Theochem) 756, 109-112
  64. Jain A, Purohit C K, Verma S & Shankararamankrishnan R (2007) The J. of Physical Chemistry B Letters 111, 8680-8683
  65. Egli M & Sarkhel S (2007) Acc. Chem. Res. 40, 197-205
  66. Gautrot J E, Hodge P, Cupertino D & Helliwell M (2006) New J. of Chemistry 30, 1801-1807
  67. Maccallum P H, Poet R & Milner-White E J (1995) J. Mol. Biol. 48, 374-384
  68. Maccallum P H, Poet R & Milner-White E J (1995) J. Mol. Biol. 248, 361-373
  69. Allen F H, Baalham C A, Lommerse J P M & Raithby P R(1998) Acta Crystallogr B54, 320-329
  70. Allen F H, Dacies J E, Galloy J J, Johnson O, Kennard O, Macrae C F, Mitchell E M, Mitchell G F, Smith J M & Watson D G (1991) J Chem Inf Comput Sci 31, 187-204
  71. Deane C M, Allen F H, Taylor R & Blundell T L (1999) Protein Engineering 12, 1025-1028
  72. Nandel F S, Kaur H, Malik N, Shankar N & Jain D V S (2001) Indian J. Biochem. Biophys. 38, 417-425
  73. Nandel F S & Kaur H (2003) Indian J. Biochem. Biophys. 40, 265-273
  74. Nandel F S & Saini A (2011) J. of Biophysical Chemistry 2, 37-48
  75. Nandel F S, Jaswal R R, Saini A, Nandel V & Shafique M (2014) Journal of Molecular Modeling 20, 24-29
  76. Desiraju G R & Steiner T(1999) The Weak Hydrogen Bond: In Structural Chemistry and Biology, Oxford Science Publications
  77. Peggion E, Cosani A, Verdini A S, Del Pra A & Mammi M (1968) Biopolymers 6, 1477-1486
  78. Urry D W, Glicksan J D, Mayery D F & Haider J (1972) Biochemistry 11, 487-493
  79. Schuler B, Lipman E A, Steinbach P J, Kumke M & Eaton W A (2005) Proc Natl Acad Sci USA 102, 2754–2759
  80. Ungar-waron H, Gurari D, Hurwitz E & Sela M (1973) Eur J Immunol 3, 201–205
  81. Miranda L P & Alewood P (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 1181-1186
  82. Sato S, Kwon Y, Kamisuki S, Srivastava N, Mao Q A, Kawazoe Y & Uesugi M (2007) J Am Chem Soc 129, 873–880
  83. Jitariu L C, Wilson C & Hirst D M (1997) Journal of Molecular Structure (Theochem) 391, 111-116.
  84. Schmid E D & Brodbek E (1985) Can. J. Biophys. 63, 1365-1371.
Index Terms

Computer Science
Information Sciences

Keywords

biomimetic Nphe/Nrpe/Nspe peptoids simulations conformational analysis PP and inverse PP structures.