CFP last date
20 December 2024
Reseach Article

Simulation of a Nanoscale SOI TG n-FinFET

by Nour El Islam Boukortt, Baghdad Hadri, Alina Caddemi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 138 - Number 8
Year of Publication: 2016
Authors: Nour El Islam Boukortt, Baghdad Hadri, Alina Caddemi
10.5120/ijca2016908981

Nour El Islam Boukortt, Baghdad Hadri, Alina Caddemi . Simulation of a Nanoscale SOI TG n-FinFET. International Journal of Computer Applications. 138, 8 ( March 2016), 10-14. DOI=10.5120/ijca2016908981

@article{ 10.5120/ijca2016908981,
author = { Nour El Islam Boukortt, Baghdad Hadri, Alina Caddemi },
title = { Simulation of a Nanoscale SOI TG n-FinFET },
journal = { International Journal of Computer Applications },
issue_date = { March 2016 },
volume = { 138 },
number = { 8 },
month = { March },
year = { 2016 },
issn = { 0975-8887 },
pages = { 10-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume138/number8/24397-2016908981/ },
doi = { 10.5120/ijca2016908981 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:39:07.856003+05:30
%A Nour El Islam Boukortt
%A Baghdad Hadri
%A Alina Caddemi
%T Simulation of a Nanoscale SOI TG n-FinFET
%J International Journal of Computer Applications
%@ 0975-8887
%V 138
%N 8
%P 10-14
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The objective of this work is to study the electrical characteristics of a nanoscale SOI Tri-Gate n-channel fin field-effect transistor (FinFET) structure with 8 nm gate length using Semiconductor TCAD tools. ATLAS™ tools are computer programs which allow for the creation, fabrication, and simulation of semiconductor devices in three dimensions with different models under consideration. The drain current, transconductance, threshold voltage, subthreshold slope, leakage current, drain induced barrier lowering, and IOn/IOff current ratio are analyzed in the various biasing configuration. In addition, FinFET device with a high value of gate dielectric constant exhibits much better performance compared to the Si3N4 dielectric material, which is desirable for high performance low-power/low-voltage applications. It is found that increasing the high-k value was beneficial in reducing the subthreshold slope, DIBL, and leakage current.

References
  1. Colinge, J-P. 2008 FinFET and Other MultiGate Transistors, pp 350.
  2. Narendar, V. and Mishra, R. A. 2015 Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs)” Superlattices Microstruct., 85, 357-369.
  3. Hisamoto, D. Lee, W. C. et al. 2000 FinFET—A Self Aligned Double-Gate MOSFET Scalable to 20 nm IEEE Trans. Electron Devices., 47, 2320-2325.
  4. Ritzenthaler, R., Lime, F. Faynot, O. Cristoloveanu, S. and Iñiguez, B. 2011 3D analytical modelling of subthreshold characteristics in vertical Multiple-gate FinFET transistors. Solid-State Electronics., 65/66, 94-102.
  5. Raskin, J-P. 2013 Silicon-on- insulator MOSFETs models in analog/RF domain. Int J Numer Model., 27, 707-735.
  6. Elthakeb, A. T. Abd Elhamid, H. and Ismail, Y. 2015 Scaling of TG-FinFETs: 3-D Monte Carlo Simulations in the Ballistic and Quasi-Ballistic Regimes. IEEE Trans. Electron Devices., 62, 1796-1802.
  7. Huang, X., Lee, W. C. et al. 2001 Sub-50 nm P-Channel FinFET. IEEE Trans. Electron Devices., 48, 880-886.
  8. Chau, R. Datta, S. Doczy, M. Doyle, B. Kavalieros, J. and Metz. M. 2004 High-k/Metal–Gate Stack and Its MOSFET Characteristics. IEEE Electron Device Lett., 25, 408-410.
  9. Ortiz, R. P. Facchetti, A. and Marks. T. J. 2010 High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect. Transistors. Chem. Rev., 110, 205-239.
  10. Silvaco International, 2012 Atlas User's Manual Device Simulation Software (Santa Clara: Silvaco International).
  11. Baravelli, E. Marchi, L. Speciale. N. 2009 Fin shape fluctuations in FinFET: Correlation to electrical variability and impact on 6-T SRAM noise margins. Solid-State Electronics., 53, 1303-1312.
  12. Xu, W. Yin, H. Ma, X. Hong, P. Xu, M. and Meng, L. 2015 Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate. Nanoscale Res Lett., 249, 1-7.
  13. Boucart, K. and Ionescu, A. M., 2007 Double-Gate Tunnel FET With High-κ Gate Dielectric. IEEE T ELECTRON DEV., 54, 4-9.
  14. Huang, W. T. and Li. Y. 2015 Electrical characteristic fluctuation of 16-nm-gate trapezoidal bulk FinFET devices with fixed top-fin width induced by random discrete dopants. Nanoscale Res Lett., 10:116:1-8.
  15. Das, R., Goswami, R., and Baishya, S. 2016 Tri-gate heterojunction SOI Ge-FinFETs. Superlattices Microstrut., 91, 51-61.
  16. Mohapatra, S. K. Pradhan, K. P. 2013 Some Device Design Considerations to Enhance the Performance of DG-MOSFETs. Trans Electr Electron Mater., 14, 291-294.
  17. Sharma, D. and Vishvakarma, S. K. 2015 Analyses of DC and analog/RF performances for short channel quadruple-gate gate-all-around MOSFET. Microelectr J., 46:731-739.
  18. Pradhan K.P. et al. 2016 Exploration of symmetric high-k spacer (SHS) hybrid FinFET for high performance application. Superlattices Microstruct., 90, 191-197.
Index Terms

Computer Science
Information Sciences

Keywords

Device scaling FinFET SCEs Leakage current Silvaco Software.