CFP last date
20 January 2025
Reseach Article

Thermal Image Processing Approach to Detect Malaria using Fuzzy Logic

by Amey Walke, Goutam Ghosh, Shashikant Dewangan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 137 - Number 14
Year of Publication: 2016
Authors: Amey Walke, Goutam Ghosh, Shashikant Dewangan
10.5120/ijca2016908710

Amey Walke, Goutam Ghosh, Shashikant Dewangan . Thermal Image Processing Approach to Detect Malaria using Fuzzy Logic. International Journal of Computer Applications. 137, 14 ( March 2016), 10-14. DOI=10.5120/ijca2016908710

@article{ 10.5120/ijca2016908710,
author = { Amey Walke, Goutam Ghosh, Shashikant Dewangan },
title = { Thermal Image Processing Approach to Detect Malaria using Fuzzy Logic },
journal = { International Journal of Computer Applications },
issue_date = { March 2016 },
volume = { 137 },
number = { 14 },
month = { March },
year = { 2016 },
issn = { 0975-8887 },
pages = { 10-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume137/number14/24447-2016908710/ },
doi = { 10.5120/ijca2016908710 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:38:22.339638+05:30
%A Amey Walke
%A Goutam Ghosh
%A Shashikant Dewangan
%T Thermal Image Processing Approach to Detect Malaria using Fuzzy Logic
%J International Journal of Computer Applications
%@ 0975-8887
%V 137
%N 14
%P 10-14
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The thermal image processing technique for detecting malaria using General Fuzzy Min-Max neural network (GFMM). For detecting malaria, image should go through 4 standard steps, pre-processing, segmentation, feature extraction and selection and classification. Median filter is used in pre-processing step which reduces salt-and-pepper noise of the image. The filtered image is then segmented with the help of Otsu thresholding technique which automatically computes the optimum threshold partitioning the two classes such that spreading is minimal. The features of the segmented part are extracted by Gray Level Co-occurrence Matrix (GLCM), which extracts the infected part of the malaria blood cell. This matrix holds data of gray values of every pixel at its corresponding location. Finally, the GFMM is performed on the extracted data for classification. It performs classification along with clustering, which provides efficient way in recognizing and searching the infected part of the cell.

References
  1. Akther M, Ahmed K, Hasan Z. 2013 Detection of Vehicle’s Number Plate at Nighttime using Iterative Threshold Segmentation (ITS) Algorithm
  2. C.A. Moxon, G.E. Grau, A.G. Craig 2011 Malaria: modification of the red blood cell and consequences in the human host
  3. C.K. Murray, R.A. Gasser Jr., A.J. Magill, R.S. Miller 2008 Update on rapid diagnostic testing for malaria
  4. C. Wongsrichanalai, M.J. Barcus, S. Muth, A. Sutamihardja, W.H. Wernsdorfer, 2008 A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT)
  5. F. Omodeo-Salè, A. Motti, N. Basilico, S. Parapini, P. Olliaro, D. Taramelli 2003 Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum
  6. F. Omodeo-Salè, A. Motti, A. Dondorp, N.J. White, D. Taramelli, 2008 Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haemproducts
  7. Gonzalez R, Woods R. 2008 Digital Image Processing
  8. H.W. Hou, A.A.S. Bhagat, A.G.L. Chong, P. Mao, K.S.W. Tan, J. Han, C.T. Lim, 2010 Deformability based cell margination–a simple microfluidic design for malaria-infected erythrocyte separation,
  9. J.P. Shelby, J. White, K. Ganesan, P.K. Rathod, D.T. Chiu, 2003 A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes
  10. J.P. Mills, M. Diez-Silva, D.J. Quinn, M. Dao, M.J. Lang, K.S.W. Tan, C.T. Lim, G. Milon, P.H. David, O. Mercereau-Puijalon, S. Bonnefoy, S. Suresh, 2007 Effect of plasmodial RESA protein on deformability of human red blood cells harbouring Plasmodium falciparum
  11. L. Gervais, N. de Rooij, E. Delamarche, 2011 Microfluidic chips for point-of-care immunodiagnostics
  12. M. Sezgin and B. Sankur 2004 Survey over image thresholding techniques and quantitative performance evaluation
  13. Nobuyuki Otsu 1979 A threshold selection method from gray-level histograms
  14. Ostu N A. 1979 Threshold Selection Method from Gray-Level Histograms
  15. . Lima, T. Ishikawa, Y. Imai, M. Takeda, S. Wada, T. Yamaguchi 2008 Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry
  16. R. Fan, O. Vermesh, A. Srivastava, B.K.H. Yen, L. Qin, H. Ahmad, G.A. Kwong, C.- C. Liu, J. Gould, L. Hood, J.R. Heath 2008 Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood
  17. Sujji G, Lakshmi YVS, Wiselin G. 2013 MRI Brain Image Segmentation based on Thresholding. International Journal of Advanced Computer Research
Index Terms

Computer Science
Information Sciences

Keywords

Image pre-processing Median filtering Segmentation Otsu Thresholding Feature extraction GLCM Classification General Fuzzy Min-Max neural network.