CFP last date
20 January 2025
Reseach Article

Personalized Recommender System using Collaborative Filtering Technique and Pyramid Maintenance Algorithm

by Minakshi Pachpatil, Anjana N. Ghule
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 136 - Number 8
Year of Publication: 2016
Authors: Minakshi Pachpatil, Anjana N. Ghule
10.5120/ijca2016908526

Minakshi Pachpatil, Anjana N. Ghule . Personalized Recommender System using Collaborative Filtering Technique and Pyramid Maintenance Algorithm. International Journal of Computer Applications. 136, 8 ( February 2016), 25-31. DOI=10.5120/ijca2016908526

@article{ 10.5120/ijca2016908526,
author = { Minakshi Pachpatil, Anjana N. Ghule },
title = { Personalized Recommender System using Collaborative Filtering Technique and Pyramid Maintenance Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { February 2016 },
volume = { 136 },
number = { 8 },
month = { February },
year = { 2016 },
issn = { 0975-8887 },
pages = { 25-31 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume136/number8/24175-2016908526/ },
doi = { 10.5120/ijca2016908526 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:36:33.909656+05:30
%A Minakshi Pachpatil
%A Anjana N. Ghule
%T Personalized Recommender System using Collaborative Filtering Technique and Pyramid Maintenance Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 136
%N 8
%P 25-31
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Location aware recommender system(LAS) make use of spatial ratings for generating personalized recommendations.It uses Collaborative filtering techniques to generate recommendations based on user location,item location or both user and item location . LAS uses spatial ratings for spatial items , Spatial ratings for Non-spatial items, Non spatial ratings for spatial items to generate personalized recommendation. For spatial ratings for non spatial items LAS uses user partitioning technique where spatial ratings are distributed as per user location in the pyramid. Pyramid Maintenance algorithm provided to achieve required scalability or locality.LAS is scalable as number of γ-cells are increased in pyramid and to improve locality α-cells are increased to maintain CF Model. LAS is efficient as compare to traditional recommendation system because algorithm provided is strong enough to cope challenge of locality and scalability.

References
  1. G. Linden, B. Smith, and J. York, “Amazon.com recommenda-tions: Item-to-item collaborative filtering,” IEEE Internet Comput., vol. 7, no. 1, pp. 76–80, Jan./Feb. 2003.
  2. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “GroupLens: An open architecture for collaborative filtering of netnews,” in Proc. CSWC, Chapel Hill, NC, USA, 1994.
  3. The facebook blog. Facebook Places [Online]. Available: http://tinyurl.com/3aetfs3
  4. G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: A survey of the state-of-the-art and pos-sible extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749, Jun. 2005.
  5. MovieLens [Online]. Available: http://www.movielens.org/
  6. Foursquare [Online]. Available: http://foursquare.com
  7. New York Times - A Peek into Netflix Queues [Online]. Available: http://www.nytimes.com/interactive/2010/01/10/nyregion/ 20100110-netflix-map.html
  8. J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel, “LARS: A location-aware recommender system,” in Proc. ICDE, Washington, DC, USA, 2012.
  9. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-orative filtering recommendation algorithms,” in Proc. Int. Conf. WWW, Hong Kong, China, 2001.
  10. J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for collaborative filtering,” in Proc. Conf. UAI, San Francisco, CA, USA, 1998.
  11. W. G. Aref and H. Samet, “Efficient processing of window queries in the pyramid data structure,” in Proc. ACM Symp. PODS, New York, NY, USA, 1990.
  12. R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval on composite keys,” Acta Inf., vol. 4, no. 1, pp. 1–9, 1974.
  13. A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proc. SIGMOD, New York, NY, USA, 1984.
  14. K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitor-ing of spatial queries in wireless broadcast environments,” IEEE Trans. Mobile Comput., vol. 8, no. 10, pp. 1297–1311, Oct. 2009.
  15. K. Mouratidis and D. Papadias, “Continuous nearest neighbor queries over sliding windows,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 6, pp. 789–803, Jun. 2007.
  16. M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: Scalable incremental processing of continuous queries in spatiotemporal databases,” in Proc. SIGMOD, Paris, France, 2004.
  17. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating collaborative filtering recommender systems,” ACM TOIS, vol. 22, no. 1, pp. 5–53, 2004.
  18. M. J. Carey and D. Kossmann, “On saying "Enough Already!" in SQL,” in Proc. SIGMOD, New York, NY, USA, 1997.
  19. S. Chaudhuri and L. Gravano, “Evaluating top-k selection queries,” in Proc. Int. Conf. VLDB, Edinburgh, U.K., 1999.
  20. R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algo-rithms for middleware,” in Proc. ACM Symp. PODS, New York, NY, USA, 2001.
  21. J. Bao, C.-Y. Chow, M. F. Mokbel, and W.-S. Ku, “Efficient evalu-ation of k-range nearest neighbor queries in road networks,” in Proc. Int. Conf. MDM, Kansas City, MO, USA, 2010.
  22. G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,” ACM TODS, vol. 24, no. 2, pp. 265–318, 1999.
  23. K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, “Continuous nearest neighbor monitoring in road networks,” in Proc. Int. Conf. VLDB, Seoul, Korea, 2006.
  24. D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest neighbor queries in spatial databases,” ACM TODS, vol. 30, no. 2, pp. 529–576, 2005.
  25. S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline opera-tor,” in Proc. ICDE, Heidelberg, Germany, 2001.
  26. M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in Proc. Int. Conf. VLDB, Seoul, Korea, 2006.
  27. N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries over web-accessible databases,” in Proc. ICDE, San Jose, CA, USA, 2002.
  28. P. Venetis, H. Gonzalez, C. S. Jensen, and A. Y. Halevy, “Hyper-local, directions-based ranking of places,” PVLDB, vol. 4, no. 5, pp. 290–301, 2011.
  29. M.-H. Park, J.-H. Hong, and S.-B. Cho, “Location-based recom-mendation system using Bayesian user’s preference model in mobile devices,” in Proc. Int. Conf. UIC, Hong Kong, China, 2007.
  30. Netflix News and Info - Local Favorites [Online]. Available: http://tinyurl.com/4qt8ujo
  31. Y. Takeuchi and M. Sugimoto, “An outdoor recommendation system in based on user location history,” in Proc. Int. Conf. UIC, Berlin, SIGMOD,Germany, 2006.
  32. V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative loca-tion and activity recommendations with GPS history data,” in Proc. Int. Conf. WWW, New York, NY, USA, 2010.
  33. M. Ye, P. Yin, and W.-C. Lee, “Location recommendation for location-based social networks,” in Proc. ACM GIS, New York, NY, USA , 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Recommender system spatial location locality pyramid structure.