CFP last date
20 January 2025
Reseach Article

Sentiment Analysis Candidates of Indonesian Presiden 2014 with Five Class Attribute

by Ghulam Asrofi Buntoro, Teguh Bharata Adji, Adhistya Erna Purnamasari
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 136 - Number 2
Year of Publication: 2016
Authors: Ghulam Asrofi Buntoro, Teguh Bharata Adji, Adhistya Erna Purnamasari
10.5120/ijca2016908288

Ghulam Asrofi Buntoro, Teguh Bharata Adji, Adhistya Erna Purnamasari . Sentiment Analysis Candidates of Indonesian Presiden 2014 with Five Class Attribute. International Journal of Computer Applications. 136, 2 ( February 2016), 23-29. DOI=10.5120/ijca2016908288

@article{ 10.5120/ijca2016908288,
author = { Ghulam Asrofi Buntoro, Teguh Bharata Adji, Adhistya Erna Purnamasari },
title = { Sentiment Analysis Candidates of Indonesian Presiden 2014 with Five Class Attribute },
journal = { International Journal of Computer Applications },
issue_date = { February 2016 },
volume = { 136 },
number = { 2 },
month = { February },
year = { 2016 },
issn = { 0975-8887 },
pages = { 23-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume136/number2/24126-2016908288/ },
doi = { 10.5120/ijca2016908288 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:35:57.935045+05:30
%A Ghulam Asrofi Buntoro
%A Teguh Bharata Adji
%A Adhistya Erna Purnamasari
%T Sentiment Analysis Candidates of Indonesian Presiden 2014 with Five Class Attribute
%J International Journal of Computer Applications
%@ 0975-8887
%V 136
%N 2
%P 23-29
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Nowadays, Twitter is not only used for social media to maintain friendship, but also Twitter is used to promote and campaign. Twitter usersare free to express their opinions, including opinions about candidates of Indonesian President 2014. This research accommodate the public opinions by classified it into five class attributes : very positive, positive, neutral, negative and very negative. The classification process using Naïve Bayes Classifier (NBC) with data preprocessing using tokenization, cleansing and filtering. The data used in this research are in Indonesian tweets about candidates of Indonesian President 2014, with 900 tweets of dataset and distributed to five class attributes equally. As result, highest accuracy obtained when the experiment using combination of tokenization n-gram, stopword list WEKA and emoticons, which is the values consisting 71,88% accuration, 71,6% precision, 71,9% recall, 6,1% TP rate and 65% TN rate.

References
  1. Marian Radke Yarrow, John A. Clausen and Paul R. Robbins (2010). The Social Meaning of Mental Illness. Journal of Social Issues. Volume 11, Issue 4, pages 33–48, Fall 1955..
  2. Mesut Kaya, Guven Fidan, Ismail H. Toroslu (2012). Sentiment Analysis of Turkish Political News. IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.
  3. Pak, A., dan Paurobek, P., (2010). Twitter as a Corpus for Sentiment Analysis and Opinion Mining, Universite de Paris-Sud, Laboratoire LIMSI-CNRS.
  4. Jennifer Yang Hui (2014). Indonesian Presidential Election: Will Social Media Forecasts Prove Right?
  5. Read, J. (2005). Using Emoticons to reduce Dependency in Machine Learning Techniques for Sentiment Classification. Meeting of the Associationfor Computational Linguistics - ACL, 43.1-6.
  6. Pang, B., Lee, L., & Vithyanathan, S. (2002). Thumbs Up? Sentiment Classification Using Machine Learning Techniques. Proceedings of The ACL-02 conference on mpirical methods in natural language processing (pp. 79-86).
  7. Franky dan Manurung, R., (2008). Machine Learning-based Sentiment Analysis of Automatic Indonesia n Translations of English Movie Reviews. In Proceedings of the International Conference on Advanced Computational Intelligence and Its Applications.
  8. Olson, David L.; & Delen, Dursun (2008); Advanced Data Mining Techniques, Springer, 1st edition (February 1, 2008), page 138, ISBN 3-540-76916-1.
  9. Tala, F. Z. (2003). A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. M.S. thesis. M.Sc. Thesis. Master of Logic Project. Institute for Logic, language and Computation. Universiteti van Amsterdam The Netherlands..
  10. ARFF files from Text Collections. http://weka.wikispaces.com/ARFF+files+from+Text+Collections.
  11. ClassStringToWordVector.http://weka.sourceforge.net/doc.de.v/weka/filters/unsupervised/attribute/StringToWordVector.html.
  12. Ian H. Witten. (2013) Data Mining with WEKA. Department of Computer Science University of Waikato New Zealand.
  13. Kohavi, & Provost. (1998) Confusion Matrix http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html.
Index Terms

Computer Science
Information Sciences

Keywords

Sentiment Analysis Candidate of Indonesian President 2014 Five Class Attribute Naïve Bayes Classifier (NBC).