CFP last date
20 December 2024
Reseach Article

Chemical Reaction based Optimal Reactive Power Flow

by G.K. Moorthy, R.K. Santhi, S.M. Alamelu
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 136 - Number 13
Year of Publication: 2016
Authors: G.K. Moorthy, R.K. Santhi, S.M. Alamelu
10.5120/ijca2016908376

G.K. Moorthy, R.K. Santhi, S.M. Alamelu . Chemical Reaction based Optimal Reactive Power Flow. International Journal of Computer Applications. 136, 13 ( February 2016), 29-33. DOI=10.5120/ijca2016908376

@article{ 10.5120/ijca2016908376,
author = { G.K. Moorthy, R.K. Santhi, S.M. Alamelu },
title = { Chemical Reaction based Optimal Reactive Power Flow },
journal = { International Journal of Computer Applications },
issue_date = { February 2016 },
volume = { 136 },
number = { 13 },
month = { February },
year = { 2016 },
issn = { 0975-8887 },
pages = { 29-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume136/number13/24234-2016908376/ },
doi = { 10.5120/ijca2016908376 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:37:01.672859+05:30
%A G.K. Moorthy
%A R.K. Santhi
%A S.M. Alamelu
%T Chemical Reaction based Optimal Reactive Power Flow
%J International Journal of Computer Applications
%@ 0975-8887
%V 136
%N 13
%P 29-33
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The optimal reactive power flow (ORPF) helps to effectively utilize the existing reactive power sources for minimizing the network loss. The chemical reaction optimization (CRO), inspired from the interactions of molecules in a chemical reaction to reach a low energy stable state and searches for optimal solution through reactions involving the on-wall ineffective collisions, decomposition, inter-molecular ineffective collision and synthesis. This paper attempts to obtain global best solution of ORPF using CRO. The results of IEEE 30 bus system are presented to demonstrate its performance.

References
  1. O.Alsac,and B. Scott. (1974). Optimal load flow with steady state security, IEEE Transactions on power Apparatus and systems. PAS: 745-751.
  2. Lee K Y ,Park Y M , Oritz J L. (1985). A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems. PAS-104:1147-1153.
  3. A.Monticelli, M .V.F Pereira and S. Granville. (1987). Security constrained optimal power flow with post contingency corrective rescheduling, IEEE Transactions on Power Systems, 2(1):175-180.
  4. N Deeb and S.M.Shahidehpur. (1990). Linear reactive power optimization in a large power network using the decomposition approach, IEEE Transactions on power systems,5(2):428-438.
  5. Hobson. (1980). Network constrained reactive power control using linear programming, IEEE Transactions on power apparatus and systems. PAS -99 (3): 868-877.
  6. K.Y. Lee, Y.M. Park, and J.L.Oritz. (1984). Fuel-cost minimization for both real and reactive power dispatches, IEE Proceedings C. 131(3): 85-93.
  7. M.K. Mangoli, and K.Y. Lee. (1993). Optimal real and reactive power control using linear programming, Electrical Power System Research. 26(1): 1-10.
  8. J.A. Momoh, S.X. Guo, E.C. Ogbuobiri and R. Adapa. (1994). The quadratic interior point method solving power system optimization problems, IEEE Transactions on Power Systems, 9(3): 1327-1336.
  9. Y.C.Wu, A.S. Debs and R.E.Marsten. (1994). A Direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows, IEEE Transactions on power systems. 9(2): 876-883.
  10. Q. H. Wu, Y. J. Cao and J. Y. Wen. (1998). Optimal reactive power dispatch using an adaptive genetic algorithm, Int. J. Elect. Power Energy Syst., 20(8): 563–569.
  11. S.Durairaj, P.S.Kannan and D.devaraj. (2005). Application of genetic algorithm to optimal reactive power dispatch including voltage stability constraint, Journal of Energy and Environment, 4:63-73.
  12. W. Yan, F. Liu, C.Y. Chung, K.P. Wong. (2006). A hybrid genetic algorithm interior point method for optimal reactive power flow, IEEE Transactions on power. Systems, 21(3): 1163-1169.
  13. L.L. Lai and J.T. Ma. (1997). Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach, IEEE Transactions on power systems. 12(1):198-206.
  14. K. Mahadevan and P.S. Kannan. (2010). Comprehensive learning Particle Swarm Optimization for Reactive Power Dispatch, Int. J. Applied Soft Computing. 10(2): 641-652.
  15. K. Vaisaka and P. Kanta Rao. (2008). Differential evolution based optimal reactive power dispatch for voltage stability enhancement, Journal of Theoretical and Applied Information Technology, 4(4): 700-709.
  16. Y. Chung, C.H. Liang, K.P. Wong and X.Z. Duan. (2010). Hybrid algorithm for differential evolution and evolutionary programming for optimal reactive power flow, IET Proc. Gen., Trans. & Dist. 4(1): 84-93.
  17. A.A. Abou El Ela, M.A. Abido and S.R.Spea. (2011). Differential evolution algorithm for optimal reactive power dispatch, Electric Power System research, 81:458-464.
  18. B.Dai, W. Chen. (2009). Seeker Optimization Algorithm for Optimal Reactive Power Dispatch, IEEE Transactions Power Systems. 24(3): 1218-31.
  19. Bhattacharya and K.P. Chattopadhyay. (2010). Solution of optimal reactive power flow using biogeography-based optimization, Int. Journal of Electrical and Electronics Engineering. 4(8): 568-576.
  20. Lam AYS, Li VOK.(2010). Chemical-reaction-inspired metaheuristic for optimization, IEEE Trans Evol Comput., 14(3): 381–99.
  21. Lam Albert YS, Li Victor OK, Yu James JQ. (2012). Real-coded chemical reaction optimization, IEEE Trans Evol Comput., 16(3): 339–53.
  22. Kuntal Bhattacharjee, Aniruddha Bhattacharya and Sunita Halder nee Dey. (2014). Solution of economic emission load dispatch problems of power systems by real coded chemical reaction algorithm, Electrical Power and Energy Systems, 59: 176-187.
  23. J. Xu, A. Y. S. Lam, and V. O. K. Li. (2011). Chemical reaction optimization for task scheduling in grid computing, IEEE Trans. Parallel Distrib. Syst., 22(10: 1624-1631.
  24. J. J. Q. Yu, A. Y. S. Lam, and V. O. K. Li. (2011). Evolutionary artificial neural network based on chemical reaction optimization,” in Proc. IEEE CEC: 2083–2090.
  25. W.F. Tinney and C.E. Hart. (1967). Power flow solution by Newton’s method, IEEE Transaction on Power Apparatus And Systems PAS-86(11): 1449-1460.
Index Terms

Computer Science
Information Sciences

Keywords

Optimal reactive power flow chemical reaction optimization