CFP last date
20 January 2025
Reseach Article

Application of Intuitionistic Fuzzy Multisets in Appointment Process

by P. A. Ejegwa, L. N. Kwarkar, K. N. Ihuoma
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 135 - Number 1
Year of Publication: 2016
Authors: P. A. Ejegwa, L. N. Kwarkar, K. N. Ihuoma
10.5120/ijca2016908167

P. A. Ejegwa, L. N. Kwarkar, K. N. Ihuoma . Application of Intuitionistic Fuzzy Multisets in Appointment Process. International Journal of Computer Applications. 135, 1 ( February 2016), 1-4. DOI=10.5120/ijca2016908167

@article{ 10.5120/ijca2016908167,
author = { P. A. Ejegwa, L. N. Kwarkar, K. N. Ihuoma },
title = { Application of Intuitionistic Fuzzy Multisets in Appointment Process },
journal = { International Journal of Computer Applications },
issue_date = { February 2016 },
volume = { 135 },
number = { 1 },
month = { February },
year = { 2016 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume135/number1/24010-2016908167/ },
doi = { 10.5120/ijca2016908167 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:34:32.764304+05:30
%A P. A. Ejegwa
%A L. N. Kwarkar
%A K. N. Ihuoma
%T Application of Intuitionistic Fuzzy Multisets in Appointment Process
%J International Journal of Computer Applications
%@ 0975-8887
%V 135
%N 1
%P 1-4
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a precise note on intuitionistic fuzzy multisets is given and the concept is applied to appointment process. This process was carried out assuming three sets of 10-man committees screened five candidates vying for positions in an organization independently to obtain intuitionistic fuzzy multi-data. The obtained data are compared with the organization requirements of appointments via a new distance measure.

References
  1. Atanassov, K.T. 1983. Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia.
  2. Atanassov, K.T. 1999. Intuitionistic fuzzy sets: theory and application, Springer-Verlay.
  3. Das, S., Kar, M.B., Kar, S. 2013. Group multi-criteria decision making using intuitionistic multi-fuzzy sets, J. of Uncertainty Analysis and Applications, 1 (10) 1-16.
  4. Deepa, C. 2014. Some implication results related to intuitionistic fuzzy multisets. Int. J. of Advance Research in Computer Science and Software Engineering, 5 (4) 361-365.
  5. Ejegwa, P.A. 2015. New operations on intuitionistic fuzzy multisets, J. of Mathematics and Informatics 3, 17-23.
  6. Ejegwa, P.A. 2015. Mathematical techniques to transform intuitionistic fuzzy multisets to fuzzy sets, J. of Information and Computing Science 10 (2) 169-172.
  7. Ejegwa, P.A. 2015. Intuitionistic fuzzy sets approach in appointment of positions in an organization via max- min-max rule, Global J. of Sci. Frontier Research: Math. & Decision Sciences 15 (6) 1-5.
  8. Ejegwa, P.A. 2014. On difference and symmetric difference operations on intuitionistic fuzzy multisets, J. of Global Research in Mathematical Archives 2 (10) 16-21.
  9. Ejegwa, P.A., Awolola, J.A. 2013. Some algebraic structures of intuitionistic fuzzy multisets, Int. J. of Science & Technology 2 (5) 373-376.
  10. Ejegwa, P.A., Edibo, O.P. 2014. Some distance measures between intuitionistic fuzzy multisets, Int. J. of Scientific & Technology Research 3 (4) 332-334.
  11. Ejegwa, P.A., Awolola, J.A. 2014. Intuitionistic fuzzy multisets in binomial distributions, Int. J. of Scientific and Technology Research 3 (4) 335-337.
  12. Ejegwa, P.A., Modom, E.S. 2015. Diagnosis of viral hepatitis using new distance measure of intuitionistic fuzzy sets, Intern. J. of Fuzzy Mathematical Archive 8 (1) 1-7.
  13. Ibrahim, A.M., Ejegwa, P.A. 2013. Some modal operators on intuitionistic fuzzy multisets, Int. J. of Engineering and Scientific Research 4 (9) 1814-1822.
  14. Rajarajeswari, P., Uma, N. 2013. A study of normalized geometric and normalized Hamming distance measures in intuitionistic fuzzy multisets, Int. J. of Science and Research, 2 (11) 76-80.
  15. Rajarajeswari, P., Uma, N. 2014. Correlation measure for intuitionistic fuzzy multisets, Int. J. of Research in Engineering and Technology, 3 (1) 611-617
  16. Rajarajeswari, P., Uma, N. 2014. Normalized Hamming similarity measures for intuitionistic fuzzy multisets and its application in medical diagnosis, Int. J. of Mathematics Trends and Technology, 5 (3) 219-225.
  17. Rajarajeswari, P., Uma, N. 2014. The Zhang and Fu’s similarity measures on intuitionistic fuzzy multisets, Int. J of Innovation Research in Science, Engineering and Technology, 3 (5) 12309-12317.
  18. Shinoj, T.K., Sunil, J.J. 2012. Intuitionistic fuzzy multisets and its application in medical diagnosis, Int. J. of Mathematical and Computational Sciences 6 34-38.
  19. Shinoj, T.K., Sunil, J.J. 2013. Intuitionistic fuzzy multisets, Int. J. of Engineering Science and Innovative Technology 2 (6) 1-24.
  20. Shinoj, T.K., Sunil, J.J. 2013. Accuracy in collaborative robotics: an intuitionistic fuzzy multiset approach, Global J. of Sc. Frontier Research Math. and Decision Sciences 13 (10) 21-28.
  21. Yager, R.R. 1986. On the theory of bags, Int. J. of General Systems 13, 23-37.
Index Terms

Computer Science
Information Sciences

Keywords

Fuzzy multisets intuitionistic fuzzy sets intuitionistic fuzzy multisets intuitionistic fuzzy sets appointment process distance measures.