CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Data Preprocessing and Reducing for Microarray Data Exploration and Analysis

by Fadoua Rafii, M'hamed Aït Kbir, Badr Dine Rossi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 132 - Number 16
Year of Publication: 2015
Authors: Fadoua Rafii, M'hamed Aït Kbir, Badr Dine Rossi
10.5120/ijca2015907691

Fadoua Rafii, M'hamed Aït Kbir, Badr Dine Rossi . Data Preprocessing and Reducing for Microarray Data Exploration and Analysis. International Journal of Computer Applications. 132, 16 ( December 2015), 20-26. DOI=10.5120/ijca2015907691

@article{ 10.5120/ijca2015907691,
author = { Fadoua Rafii, M'hamed Aït Kbir, Badr Dine Rossi },
title = { Data Preprocessing and Reducing for Microarray Data Exploration and Analysis },
journal = { International Journal of Computer Applications },
issue_date = { December 2015 },
volume = { 132 },
number = { 16 },
month = { December },
year = { 2015 },
issn = { 0975-8887 },
pages = { 20-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume132/number16/23679-2015907691/ },
doi = { 10.5120/ijca2015907691 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:29:37.180555+05:30
%A Fadoua Rafii
%A M'hamed Aït Kbir
%A Badr Dine Rossi
%T Data Preprocessing and Reducing for Microarray Data Exploration and Analysis
%J International Journal of Computer Applications
%@ 0975-8887
%V 132
%N 16
%P 20-26
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The advances known by Microarray technology have provided birth to enormous ameliorations and investigations in different domains, such as medicine, the pharmaceutical, biotechnology, agrochemical and food industries. The exploitation of Microarray data is still complex for many researchers, due to its huge quantity generated by different experiments. The produced Microarray data must be treated in order to get more valuable information, compare data by improving its clear visualization, make further analysis and respond to crucial hypotheses. Many researchers have found out the biological significance of Microarray data as the greatest challenge. This task couldn’t be achieved without preprocessing and taking into consideration biases caused by the presence of variation sources in the Microarray experiment steps. This article will highlight the importance of implementing the preprocessing and the Data mining techniques on Microarray data. It will demonstrate the usefulness of results obtained after these techniques application, and the efficiency of PCA technique for analyzing Microarray data.

References
  1. C.-R. Chen, W.-Y. Shu, M.-L. Tsai, W.-C. Cheng, and I. C. Hsu, ''THEME: A web tool for loop-design microarray data analysis'', Computers in Biology and Medicine, vol. 42, no. 2, pp. 228–234, Feb. 2012.
  2. N. E. Olson, "The microarray data analysis process: from raw data to biological significance", NeuroRx, vol. 3, no. 3, pp. 373–383, 2006.
  3. J. Craig and N. C. Wong, Eds., "Epigenetics: a reference manual", Norwich, Norfolk, UK: Caister Academic Press, pp. 143-159, 2011.
  4. Fadoua Rafii, M. Aït Kbir and B. D. Rossi Hassani, "Microarray Data Integration to Explore the Wealth of Sources Generated by Modern Molecular Biology", Veille Stratégique Scientifique et Technologique, Granada, Spain, 11 - 13 may 2015.
  5. Fadoua Rafii, M. Aït Kbir and B. D. Rossi Hassani, "Microarray Data Preprocessing To Improve Exploration on Biological Databases", International Conference on Big Data, Cloud and Applications, Tetuan, Morocco, 25 - 26 may 2015.
  6. G. Ventimiglia and S. Petralia, "Recent Advances in DNA Microarray Technology: an Overview on Production Strategies and Detection Methods", BioNanoScience, vol. 3, no. 4, pp. 428–450, Dec. 2013.
  7. Schena, M., Shalon, D.; Davis, R. W.; Brown, P. O., "Quantitative monitoring of gene expression patterns with a complementary DNA microarray", Science 270, pp. 467-470, 1995.
  8. Lashkari D A, DeRisi J L, McCusker JH, Namath A F, Gentile C, Hwang SY, Brown PO, Davis RW, "Yeast microarrays for genome wide parallel genetic and gene expression analysis", Proc. Natl. Acad. Sci. U.S.A. 94, pp. 13057–13062, 1997.
  9. Schena, M., Heller, R., Theriault, T., Konrad, K., Lachenmeier, E., and Davis, R. W., "Microarrays: biotechnology’s disovery platform for functional genomics", Trends Biotech. 16, pp. 301–306, 1998.
  10. K. Kafadar and T. Phang, "Transformations, background estimation, and process effects in the statistical analysis of microarrays", Computational Statistics & Data Analysis, vol. 44, no. 1–2, pp. 313–338, Oct. 2003.
  11. Miller LD, Long PM, Wong L, Mukherjee S, McShane LM and Liu ET, "Optimal gene expression analysis by microarrays", Cancer Cell, pp. 353–361, 2002.
  12. Pavlov, V., Xiao, Y., Gill, R., Dishon, A., Kotler, M., Willner, I., "Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels", Analytical Chemistry 76, pp. 2152-2156, 2004.
  13. Gooding, J. J., "Electrochemical DNA hybridization biosensors", Electroanalysis 14, pp. 1149 -1156, 2002.
  14. Fawcett N. C., Evans J. A., Chien L. C., Flowers N., "A quartz crystal detector for DNA", Analytical Letters 21, pp. 1099-1110, 1998.
  15. Sánchez-Pla, A., "DNA Microarrays Technology: Overview and Current Status", Comprehensive Analytical Chemistry, vol. 63, Elsevier, pp. 1–23, 2014.
  16. A. Brazma, M. Kapushesky, H. Parkinson, U. Sarkans, and M. Shojatalab, "Data Storage and Analysis in ArrayExpress", Methods in Enzymology, vol. 411, Elsevier, pp. 370–386, 2006.
  17. J. Demeter, C. Beauheim, J. Gollub, T. Hernandez-Boussard, H. Jin, D. Maier, J. C. Matese, M. Nitzberg, F. Wymore, Z. K. Zachariah, P. O. Brown, G. Sherlock, and C. A. Ball, "The Stanford Microarray Database: implementation of new analysis tools and open source release of software", Nucleic Acids Research, vol. 35, no. Database, pp. D766–D770, Jan. 2007.
  18. https://array.nci.nih.gov/caarray/home.action
  19. Gimbrone, Jr, et al., ''Argus-A New Database System for Web-Based Analysis of Multiple Microarray Data Sets'', pp. 1603-1610, 2001.
  20. http://biochem218.stanford.edu/Projects%202012/Yu.pdf
  21. J. Quackenbush, "Microarray data normalization and transformation", Nature Genetics, vol. 32, no. Supp, pp. 496–501, Dec. 2002.
  22. Xiaofeng Zhou, Hiroshi Egusa, Steven W. Cole, Ichiro Nishimura, and David T.W. Wong, ''Methodology of Microarray Data Analysis'', Volume 3: Molecular Genetics, Liver Carcinoma, and Pancreatic Carcinoma pp. 17-29, 2005.
  23. T. K. Karakach, R. M. Flight, S. E. Douglas, and P. D. Wentzell, "An introduction to DNA microarrays for gene expression analysis", Chemometrics and Intelligent Laboratory Systems, vol. 104, no. 1, pp. 28–52, Nov. 2010.
  24. K. Fukunaga, "Introduction to pattern recognition (Second ed.)", Academic Press (San Diego), 1990.
  25. Tabachnick B.G., Fidel L.S., "Using Multivariate Statistics 3rd Edition", Harper Collins College Publisher, pp. 635-708, 1996.
  26. S. Raychaudhuri, J. M. Stuart, R. B. Altman, and others, "Principal components analysis to summarize microarray experiments: application to sporulation time series", in Pac Symp Biocomput, vol. 5, pp. 455–466, 2000.
  27. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7670
Index Terms

Computer Science
Information Sciences

Keywords

Microarray data Preprocessing techniques Analysis PCA technique