CFP last date
20 December 2024
Reseach Article

Integrating Document Usage with Document Index in Competitive Intelligence Process

by Lukman A. Akanbi, Emmanuel R. Adagunodo, Amos David
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 132 - Number 13
Year of Publication: 2015
Authors: Lukman A. Akanbi, Emmanuel R. Adagunodo, Amos David
10.5120/ijca2015907630

Lukman A. Akanbi, Emmanuel R. Adagunodo, Amos David . Integrating Document Usage with Document Index in Competitive Intelligence Process. International Journal of Computer Applications. 132, 13 ( December 2015), 37-43. DOI=10.5120/ijca2015907630

@article{ 10.5120/ijca2015907630,
author = { Lukman A. Akanbi, Emmanuel R. Adagunodo, Amos David },
title = { Integrating Document Usage with Document Index in Competitive Intelligence Process },
journal = { International Journal of Computer Applications },
issue_date = { December 2015 },
volume = { 132 },
number = { 13 },
month = { December },
year = { 2015 },
issn = { 0975-8887 },
pages = { 37-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume132/number13/23658-2015907630/ },
doi = { 10.5120/ijca2015907630 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:29:20.967940+05:30
%A Lukman A. Akanbi
%A Emmanuel R. Adagunodo
%A Amos David
%T Integrating Document Usage with Document Index in Competitive Intelligence Process
%J International Journal of Computer Applications
%@ 0975-8887
%V 132
%N 13
%P 37-43
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The amount of information in term of documents, available to users as a result of information retrieval process for the purpose of resolution of decision problems is a major factor that determines whether economically viable decisions would be made or not. Various works in the literature had addressed the challenges of representing the documents with key terms (generated from the document) as well as the variations in the meaning of each key terms. In this work, a document representation scheme that is based on the key terms generated from the documents and their usage was developed. To realize this document representation scheme, a computational model for capturing document usage was designed with the use of attribute value pair technique of document annotation. The document usage model designed was applied in the development of a Competitive Intelligence based Document Usage Creation and Exploration system that is currently under development. A preliminary evaluation of the document usage model based on cosine similarity function between user query and documents set was carried out. The result obtained shows that representing documents in terms of their usage can enhance the quality of information search results as documents that would hitherto be considered not relevant to user query are found to be ranked very relevant based on previous usages.

References
  1. Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval ACM Press New York.
  2. Berry, M. W. and Browne, M. (2005) Understanding Search Engines: Mathematical Modelling and Text Retrieval. Second Edition. Society for Industrial and Applied Mathematics (SIAM). Philadelphia
  3. Bouaka, N. (2004) Développement d'un modèle pour l'explicitation d'un problème décisionnel: un outil d'aide à la decisiodans un contexte d'intelligence economique. Doctorant Thesis, Université Nancy 2, Nancy. France.
  4. Camelo, C., Trigo, M. R., Quoniam, L. and Cardoso, J. C. (2011) Competitive Intelligence and the Development of Corporate Universities. In Competitive Intelligence and Decision Problems (ed A. David), John Wiley & Sons, Inc., Hoboken, NJ, USA. Chapter 14. Pp 281-298.
  5. Castells, P., Fernandez, M. and Vallet, D. (2007). An Adaptation of the Vector-Space Model for Ontology-Based Information Retrieval. IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 2, Pp 261-272.
  6. David A. (2009) Relevance Information in Economic Intelligence. In Information Science (ed F. Papy). ISTE Ltd London and John Willey & Son New York
  7. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman R. (1990): Indexing by Latent Semantic Analysis. Journal of American Society for Information Science. Vol 41. No 6. Pp 391-407.
  8. Dishman, P. L. and Calof, J. L. (2008) Competitive intelligence: a multiphasic precedent to marketing strategy, European Journal of Marketing, Vol. 42, No 7/8. Pp 766 – 785.
  9. Gupta, P. and Sharma, A. K. (2010): Context Based   Indexing in Search Engines using Ontology. International Journal of Computer Applications (0975-8887). Vol. 1 No. 14. Pp 49-52.
  10. Kiryakov, A., Popov, B., Terziev, I., Manov, D. and Ognyanoff, D. (2004). Semantic annotation, indexing, and retrieval. Elsevier Journal of Web Semantics: Science, Services and Agents on the World Wide Web 2, Vol. 2, Iss. 1, Pp49 - 79.
  11. MacMullen, W. J. (2005). Annotation as Process, Thing, and Knowledge: Multi-domain studies of structured dataannotation. SILS Technical Report TR-2005-02. University of North Carolina, School of Information and Library Science. Technical Report series, Chapel Hill.
  12. Maghreb, H. and David A. (2008) Open System for    Indexing and Retrieving Multimedia Information, 36th  Canadian Association for Information Science Conference  - CAIS 2008, University of British Columbia,          Vancouver.
  13. Manning, C. D., Raghavan, P. and Schütze, H. (2009) AnIntroduction to information Retrieval, Cambridge University Press, Cambridge, England. Online Edition.
  14. Odumuyiwa, V. (2011) Collaborative Information Seeking   in the Competitive Intelligence Process. In Competitive  Intelligence and Decision Problems (ed A. David), John Wiley & Sons, Inc., Hoboken, NJ, USA. Chapter 4. Pp          69-91.
  15. Ogilvie, P. (2010) Retrieval using Document Structure and Annotations. Ph.D. Thesis Carnegie Mellon University, Pittsburgh. U.S.A.
  16. Okunoye, O. B., David, A., and Uwadia, C. (2010a). Amtea: Tool for creating and exploring annotations in the context of economic intelligence (Competitive Intelligence). In 11th IEEE International Conference on   Information Reuse and Integration (IRI 2010), Pp 249- 252, Las Vegas, United States.
  17. Okunoye, O., Oladejo, F. and Odumuyiwa, V. (2010b) Dynamic Knownledge Capitalization through Annotation among Economic Intelligence Actors in a Collaborative Environment. Colloque International Veille Stratégique  Scientifique et Technologique - VSST 2010, October 2010, Toulouse, France. Pp. 1-17.
  18. Okunoye, O. B. and Uwadia, C. O. (2011) Design and   Development of a Model for Generating and Exploiting Annotation in the Context of Economic Intelligence. In   Competitive Intelligence and Decision Problems (ed A. David), John Wiley & Sons, Inc., Hoboken, NJ, USA. Chapter 9. Pp 183-197.
  19. Oren, E. Moller, K., Scerri, S., Handschuh, S. and Sintek  M. (2006). What are Semantic Annotations? Technical Report DERI Galwat. Available at: http://www.siegfried handschuh.net/pub/2006/whatissemanticannot2006.pdf (downloaded 06102012)
  20. Robert, C. A. and David, A. (2006) AMIE: An Annotation Model for Information Research. In L. Barolli, B. A. Abderazek, T. Grill, T. M. Nguyen, and D. Tjondronegore    (eds.): Frontiers in Mobile and Web Computing, Austrian   Computer Society. Vol. 216, ISBN 3-85403-216-1, pp   129-137.
  21. SCIP, (2012) About SCIP, Strategic and Competitive Intelligence Professional. Available at http://www.scip.org /content.cm?itemnumber=2214&navItemNumber=492, Retrieved 15/10/2012
  22. Trigo, M. R., Gouveia, L. B., Quoniam, L., and Riccio, E. L. (2007) Using competitive intelligence as a strategic tool in a Higher Education context, 8th European Conference on Knowledge Management (ECKM).   Consorci Escola Industrial de Barcelona (CEIB), Barcelona, Spain. 6-70 September 2007.
Index Terms

Computer Science
Information Sciences

Keywords

Document usage document representation document index usage modelling decision problem attribute value pair.