We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Evaluation of a System for Automatic Detection of Diabetic Retinopathy from Color Fundus Photographs for Screening Population

by Raju S. Maher, Sangramsing N. Kayte, Mukta Dhopeshwarkar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 131 - Number 3
Year of Publication: 2015
Authors: Raju S. Maher, Sangramsing N. Kayte, Mukta Dhopeshwarkar
10.5120/ijca2015907362

Raju S. Maher, Sangramsing N. Kayte, Mukta Dhopeshwarkar . Evaluation of a System for Automatic Detection of Diabetic Retinopathy from Color Fundus Photographs for Screening Population. International Journal of Computer Applications. 131, 3 ( December 2015), 37-41. DOI=10.5120/ijca2015907362

@article{ 10.5120/ijca2015907362,
author = { Raju S. Maher, Sangramsing N. Kayte, Mukta Dhopeshwarkar },
title = { Evaluation of a System for Automatic Detection of Diabetic Retinopathy from Color Fundus Photographs for Screening Population },
journal = { International Journal of Computer Applications },
issue_date = { December 2015 },
volume = { 131 },
number = { 3 },
month = { December },
year = { 2015 },
issn = { 0975-8887 },
pages = { 37-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume131/number3/23433-2015907362/ },
doi = { 10.5120/ijca2015907362 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:27:50.606485+05:30
%A Raju S. Maher
%A Sangramsing N. Kayte
%A Mukta Dhopeshwarkar
%T Evaluation of a System for Automatic Detection of Diabetic Retinopathy from Color Fundus Photographs for Screening Population
%J International Journal of Computer Applications
%@ 0975-8887
%V 131
%N 3
%P 37-41
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Diabetic Retinopathy is an eye disease and a common complication of diabetes that can cause vision loss if left undiagnosed at the initial stage. It is the prime cause of blindness in the working age population of the world. Colour fundus images of eyes are used by ophthalmologists to study eye diseases like diabetic retinopathy. Detection method is proposed to detect dark or red lesions such as microaneurysms and hemorrhages in fundus images. This method comprises of three stages. First, the green channel of the colour retinal image is preprocessed using polynomial contrast enhancement. Second, the candidate dark lesion objects are extracted from the contrast enhanced fundus image. A novel method is developed to extract candidate dark lesions based on matched filtering and local relative entropy thresholding. The performance of this technique is compared to mathematical morphology based dark lesion detection method. A hybrid method that combines both detection schemes is also tested for better segmentation. The final stage classifies true dark lesions from dark non-lesions using knn and svm classifiers. For image based evaluation, this method has resulted with sensitivity, specificity and accuracy of 94.86% and 95.6% 95.38% respectively.

References
  1. 1. Raju Maher, Dr.Mukta Dhopeshwarkar “Automated Detection of Non-proliferative Diabetes Retinopathy Using Fundus Images” International Journal of Advanced Research in Computer Science and Software Engineering Volume 5, Issue 3, March 2015.
  2. Bresnick GH, Mukamel DB, Dickinson JC, Cole DR. A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy. Ophthalmology. 2000;107:19–24.
  3. Kinyoun JL, Martin DC, Fujimoto WY, Leonetti DL. Ophthalmoscopy versus fundus photographs for detecting and grading diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992;33:1888–93.
  4. Raju Sahebrao Maher, Sangramsing N. Kayte, Sandip T. Meldhe, Mukta Dhopeshwarkar, “Automated Diagnosis Non-proliferative Diabetic Retinopathy in Fundus Images using Support Vector Machine” International Journal of Computer Applications (0975 – 8887)Volume 125 – No.15, September 2015.
  5. A. Osareh, M. Mirmehdi, B. Thomas and R. Markham “Automated identification of diabetic retinal exudates in digital colour images”, Ophthalmol, vol. 87, pp. 1220-23, 2003.
  6. Raju Sahebrao Maher, Dnyaneshwar S. Panchal, Sangramsing Kayte, Dr. Mukta Dhopeshwarkar” Automatic Identification of Varies Stages of Diabetic Retinopathy Using Retinal Fundus Images” International Journal of Advanced Research in Computer Science and Software Engineering, Volume 5, Issue 9, September.
  7. National Health Service. The English Diabetic Retinopathy Programme Annual Report, 1 April 2007- 31 March 2008. 2008. [Accessed March 5, 2010]. pp. 8–9.
  8. Abramoff MD, Suttorp-Schulten MS. Web-based screening for diabetic retinopathy in a primary care population: the EyeCheck project. Telemed J E Health. 2005;11:668–74.
  9. Raju Maher, Sangramsing Kayte, Dnyaneshwar Panchal, Pankaj Sathe, Sandip Meldhe, “A Decision Support System for Automatic Screening of Non-proliferative Diabetic Retinopathy” International Journal of Emerging Research in Management and Technology, Volume-4,Issue-10, October-2015.
  10. Cree MJ, Olson JA, McHardy KC, et al. A fully automated comparative microaneurysm digital detection system. Eye (Lond) 1997;11:622–8.
  11. Frame AJ, Undrill PE, Cree MJ, et al. A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput Biol Med. 1998;28:225–38.
  12. Hipwell JH, Strachan F, Olson JA, et al. Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool. Diabet Med. 2000;17:588–94.
  13. Olson JA, Strachan FM, Hipwell JH, et al. A comparative evaluation of digital imaging, retinal photography and optometrist examination in screening for diabetic retinopathy. Diabet Med. 2003;20:528–34.
  14. Spencer T, Olson JA, McHardy KC, et al. An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput Biomed Res.1996;29:284–302.
  15. Abràmoff MD, Niemeijer M, Suttorp-Schulten MS, et al. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes.Diabetes Care. 2008;31:193–8.
  16. Niemeijer M, van Ginneken B, Staal J, et al. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24:584–92.
  17. Larsen M, Godt J, Larsen N, et al. Automated detection of fundus photographic red lesions in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2003;44:761–6.
  18. Larsen N, Godt J, Grunkin M, et al. Automated detection of diabetic retinopathy in a fundus photographic screening population. Invest Ophthalmol Vis Sci. 2003;44:767–71.
  19. Fleming AD, Philip S, Goatman KA, et al. Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans Med Imaging. 2006;25:1223–32.
  20. Walter T, Klein JC, Massin P, Erginay A. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging.2002;21:1236–43.
  21. Quellec G, Lamard M, Josselin PM, et al. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging. 2008;27:1230–41.
  22. Karnowski TP, Govindasamy V, Tobin KW, et al. Retina lesion and microaneurysm segmentation using morphological reconstruction methods with ground-truth data. Conf Proc IEEE Eng Med Biol Soc.2008;2008:5433–6.
  23. Tobin KW, Abramoff MD, Chaum E, et al. Using a patient image archive to diagnose retinopathy. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5441–4.
  24. Philip S, Fleming AD, Goatman KA, et al. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol. 2007;91:1512–7.
  25. Scotland GS, McNamee P, Philip S, et al. Cost-effectiveness of implementing automated grading within the National Screening Programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91:1518–23.
  26. Niemeijer M, Abramoff M, van Ginneken B. Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans Med Imaging. 2009;28:775–85.
  27. Niemeijer M, van Ginneken B, Cree MJ, et al. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging. 2010;29:185–95.
  28. Niemeijer M, van Ginneken B, Russell SR, et al. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48:2260–7.
  29. Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography.Am J Ophthalmol. 2002;134:204–13.
Index Terms

Computer Science
Information Sciences

Keywords

Biomedical image processing retinal Fundus images microaneurysm detection morphological operator.