CFP last date
20 January 2025
Reseach Article

Generalized Directable Fuzzy Automata

by V. Karthikeyan, M. Rajasekar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 131 - Number 12
Year of Publication: 2015
Authors: V. Karthikeyan, M. Rajasekar
10.5120/ijca2015907441

V. Karthikeyan, M. Rajasekar . Generalized Directable Fuzzy Automata. International Journal of Computer Applications. 131, 12 ( December 2015), 1-5. DOI=10.5120/ijca2015907441

@article{ 10.5120/ijca2015907441,
author = { V. Karthikeyan, M. Rajasekar },
title = { Generalized Directable Fuzzy Automata },
journal = { International Journal of Computer Applications },
issue_date = { December 2015 },
volume = { 131 },
number = { 12 },
month = { December },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume131/number12/23498-2015907441/ },
doi = { 10.5120/ijca2015907441 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:27:07.256120+05:30
%A V. Karthikeyan
%A M. Rajasekar
%T Generalized Directable Fuzzy Automata
%J International Journal of Computer Applications
%@ 0975-8887
%V 131
%N 12
%P 1-5
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we introduce generalized directable fuzzy automaton and discuss their structural characterizations. We have shown that a generalized directable fuzzy automaton is an extension of a uniformly monogenically strongly directable fuzzy automaton by a uniformly monogenically trap-directable fuzzy automaton and obtain other equivalent conditions for a generalized directable fuzzy automaton.

References
  1. Cao. Y., Chen. G., Kerre. E. 2011. Bisimulations for fuzzytransition systems, IEEE Transactions on Fuzzy Systems, no. 19: 540-552.
  2. Cao. Y., Ezawa. Y. 2012. Nondeterministic fuzzy automata, Information Sciences, no. 191: 86-97.
  3. Doostfatemeh. M., Kremer. S. C. 2005. New directions in fuzzy automata, International Journal of Approximate Reasoning, no. 38: 175-214.
  4. Kandel. A., Lee. S. C. 1979. Fuzzy switching and automata theory applications, Edward Arnold Publishers Ltd. London.
  5. Karthikeyan. V., Rajasekar. M. 2011. Relation in fuzzy automata, Advances in Fuzzy Mathematics, 6 no. 1: 121-126.
  6. Karthikeyan. V., Rajasekar. M. 2012. Local necks of fuzzy automata, Advances in Theoretical and Applied Mathematics, 7 no. 2: 393-402.
  7. Karthikeyan. V., Rajasekar. M. 2015. - Synchronized fuzzy automata and their applications, Annals of Fuzzy Mathematics and Informatics, 10 no. 2: 331-342.
  8. Mordeson. J. N., Malik. D. S. 2002. Fuzzy automata and languages-theory and applications, Chapman & Hall/ CRC Press. Santos. E. S. 1968. General formulation of sequential machines, Information and Control no. 12: 5-10.
  9. Wee. W. G. 1967. On generalizations of adaptive algorithm and application Of the fuzzy sets concept to pattern classification, Ph.D Thesis Purude University.
  10. Zadeh. L. A. 1965. Fuzzy sets, Information and Control, no. 8: 338-353.
  11. Zimmermann. H. J. 1985. Fuzzy set theory and its applications, International Series in Management Science/ Operation Research, Kluwer- Nijhoff, Boston, MA.
  12. T. Petkovic, M. Ciric,and S. Bogdanovic, Decompositions of Automata and Transition Semigroups, Acta Cybernetica., (Szeged) 13(1998), 385-403.
  13. Z. Popovic, S. Bogdanovic, T. Petkovic,and M. Ciric., Generalized Directable Automata, Words, Languages and Combinatories.III. Proceedings of the Third International Colloquium in Kyoto, Japan,(M.Ito and T. Imaka, eds.), World Scientific, 2003, 378- 395.
Index Terms

Computer Science
Information Sciences

Keywords

Necks & Local necks of a fuzzy automaton Uniformly monogenically directable fuzzy automaton generalized directable fuzzy automaton.