CFP last date
20 February 2025
Reseach Article

Some New Results on Weak Integer Additive Set-Labeling of Graphs

by N.K. Sudev, K.A. Germina
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 128 - Number 5
Year of Publication: 2015
Authors: N.K. Sudev, K.A. Germina
10.5120/ijca2015906514

N.K. Sudev, K.A. Germina . Some New Results on Weak Integer Additive Set-Labeling of Graphs. International Journal of Computer Applications. 128, 5 ( October 2015), 1-5. DOI=10.5120/ijca2015906514

@article{ 10.5120/ijca2015906514,
author = { N.K. Sudev, K.A. Germina },
title = { Some New Results on Weak Integer Additive Set-Labeling of Graphs },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 128 },
number = { 5 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume128/number5/22866-2015906514/ },
doi = { 10.5120/ijca2015906514 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:20:35.102990+05:30
%A N.K. Sudev
%A K.A. Germina
%T Some New Results on Weak Integer Additive Set-Labeling of Graphs
%J International Journal of Computer Applications
%@ 0975-8887
%V 128
%N 5
%P 1-5
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Let ℕ0 denote the set of all non-negative integers and P(ℕ0) be its power set. An integer additive set-labeling (IASL) of a graph G is an injective function f : V (G) → P(ℕ0) such that the induced function f+ : E(G) → P(ℕ0) is defined by f+(uv) = f(u)+f(v), where f(u)+f(v) is the sumset of f(u) and f(v). An IASL f is said to be an integer additive set-indexer (IASI) if the associated edge-function f+ is also injective. An IASL f of a given graph G is said to be a weak integer additive set-labeling (WIASL) of G if the cardinality of the set-label of every edge of G is equal to the cardinality of the set-label of at least one end vertex of it. In this paper, we study the admissibility of weak integer additive set-labeling by different graphs.

References
  1. K. Abhishek, New directions in the Theory of Set-Valuations of Graphs, Ph.D Thesis, Kannur University, India., 2009.
  2. J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
  3. J. A. Gallian, A Dynamic Survey of Graph Labelling, The Electronic Journal of Combinatorics (DS-6), 2014.
  4. K. A. Germina and T. M. K. Anandavally, Integer Additive Set-Indexers of a Graph: Sum Square Graphs, Journal of Combinatorics, Information and System Sciences, 37(2- 4)(2012), 345-358., DOI: 10.12988/imf.2013.310188.
  5. K. A. Germina and N. K. Sudev, On Weakly Uniform Integer Additive Set-Indexers of Graphs, International Mathematical Forum, 8(37)(2013), 1827-1834.
  6. F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc., 1969.
  7. M. B. Nathanson, Additive Number Theory, Inverse Problems and Geometry of Sumsets, Springer, 1996.
  8. N. K. Sudev and K. A. Germina, On Integer Additive Set- Indexers of Graphs, International Journal of Mathematical Sciences & Engineering Applications, 8(2)(2014), 11-22.
  9. N. K. Sudev and K. A. Germina, A Characterisation of Weak Integer Additive Set-Indexers of Graphs, Journal of Fuzzy Set Valued Analysis, 2014(2014), 1-7., DOI:10.5899/2014/jfsva- 00189.
  10. N. K. Sudev and K. A. Germina, A Note on Sparing Number of Graphs, Advances and Applications in Discrete Mathematics, 14(1)(2014), 51-65.
  11. N. K. Sudev and K. A. Germina, On Weak Integer Additive Set-Indexers of Certain Graph Classes, Journal of Discrete Mathematical Sciences and Cryptography, 18(1-2)(2015), 117128., DOI : 10.1080/09720529.2014.962866
  12. N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Graph Operations, Global Journal of Mathematical Sciences: Theory and Practical, 6(1)(2014), 25-36.
  13. N. K. Sudev and K. A. Germina, Weak Integer Additive Set- Indexers of Graph Operations, TechS Vidya E-Journal of Research, 2(2013-14), 28-38.
  14. N. K. Sudev, K. A. Germina and K. P. Chithra, Weak Set-Labeling Number of Certain Integer Additive Set- Labeled Graphs, International of Computer Applications, 114(2)(2015), 1-6., DOI: 10.5120/19947-1772.
  15. N. K. Sudev, K. A. Germina and K. P. Chithra, Weak Integer Additive Set-Labeled graphs: A Creative Review, Asian European Journal of Mathematics, 8(3)(2015), 1-22., DOI: 10.1142/S1793557115500527.
  16. D. B.West, Introduction to Graph Theory, Pearson Education Inc., 2001.
Index Terms

Computer Science
Information Sciences

Keywords

Integer additive set-labeled graphs weak integer additive setlabeled graphs sparing number of graphs