CFP last date
20 December 2024
Reseach Article

Young’s Modulus and Loss Factor Estimation of Sandwich Beam with Three Optimization Methods by FEM

by Key Fonseca De Lima, Nilson Barbieri, Renato Barbieri, Luiz C. Winniques
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 128 - Number 3
Year of Publication: 2015
Authors: Key Fonseca De Lima, Nilson Barbieri, Renato Barbieri, Luiz C. Winniques
10.5120/ijca2015906485

Key Fonseca De Lima, Nilson Barbieri, Renato Barbieri, Luiz C. Winniques . Young’s Modulus and Loss Factor Estimation of Sandwich Beam with Three Optimization Methods by FEM. International Journal of Computer Applications. 128, 3 ( October 2015), 35-43. DOI=10.5120/ijca2015906485

@article{ 10.5120/ijca2015906485,
author = { Key Fonseca De Lima, Nilson Barbieri, Renato Barbieri, Luiz C. Winniques },
title = { Young’s Modulus and Loss Factor Estimation of Sandwich Beam with Three Optimization Methods by FEM },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 128 },
number = { 3 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 35-43 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume128/number3/22855-2015906485/ },
doi = { 10.5120/ijca2015906485 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:20:53.581970+05:30
%A Key Fonseca De Lima
%A Nilson Barbieri
%A Renato Barbieri
%A Luiz C. Winniques
%T Young’s Modulus and Loss Factor Estimation of Sandwich Beam with Three Optimization Methods by FEM
%J International Journal of Computer Applications
%@ 0975-8887
%V 128
%N 3
%P 35-43
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This work aims to propose an inverse methodology for the physical properties identification of sandwich beams by measured flexural resonance frequencies. The physical parameters are the Young’s modulus and the loss factor. They are estimated for each one of materials that constitute the structure of the sandwich beam which is made with the association of Hot-rolled steel, Polyurethane Rigid Foam and High Impact Polystyrene. This kind of the sandwich beam are widely used for the assembly of household refrigerators and food freezers. The solutions are obtained with parametric optimization of physical parameters of the materials that forming the sandwich beam with three methods: Genetic Algorithms (GA), Differential Evolution (DE), and Particle Swarm Optimization (PSO). Furthermore, this work intend verify the quality of the solutions obtained with parametric optimization. The parameters are estimated using measured and numeric frequency response functions (FRFs). The mathematical model to verify numeric FRF is obtained using the Finite Element Method and the two-dimensional elasticity theory coupled to three optimization methods. The results of the optimizations show that it is possible to determine effectively the physical parameters of a sandwich beam with this methodology.

References
  1. Holland J., 1975. Adaptation in Natural and Artificial System. University of Michigan Press, Ann Arbor.
  2. Goldberg D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison&Willey, New York.
  3. Storn R., Price K.,1995. Differential Evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Int. Comp. Sci. Institute. Technical Report TR-95-012, Berkeley.
  4. Eberhart R. C., Kennedy J., 1995. A new optimizer using particle swarm theory. Proceedings of the 6th Int. Symp. Micro Mach. Human Sci. IEEE Press, 39–43.
  5. Quaranta G., Monti G., Marano G. C., 2010. Parameters identification of Van der Pol–Duffing oscillators via particle swarm optimization and differential evolution. Mech. Syst. Signal Process, 24 (7), 2076-2095.
  6. Vaz Junior M., Cardoso E. L., Stahlschmidt J., 2013. Particle swarm optimization and identification of inelastic material parameters. Eng. Comput., 30 (7), 936-960.
  7. Kalita K., R. Chaudhari, and M. Ramachandran, “Mechanical Characterization and Finite Element Investigation on Properties of PLA-Jute Composite”, International Journal of Computer Applications, 123 (2013): pp. 17-21.
  8. Düğenci M., Aydemir A., Esen I., Aydın M. E., 2015. Creep modelling of polypropylenes using artificial neural networks trained with Bee algorithms. Eng. Appl. Artif. Intell., 45, 71-79.
  9. Shi Y., Sol H., Hua H., 2006. Material parameter identification of sandwich beams by an inverse method. J. Sound Vib., 290, 1234-1255.
  10. Ichchou M. N., Bareille O., Berthaut J., 2008., Identification of effective sandwich structural properties via an inverse wave approach. Eng. Struct., 30 (10), 2591-2604.
  11. Matter M., Gmür T., Cugnoni J., Schorderet A., 2011. Identification of the elastic and damping properties in sandwich structures with a low core-to-skin stiffness ratio. Composite Struct., 93, 331-341.
  12. Damanpack A. R., Shakeri M., Aghdam M. M., 2013. A new finite element model for low-velocity impact analysis of sandwich beams subjected to multiple projectiles. Composite Struct., 104, 21-33.
  13. Alvelid M., 2013. Sixth order differential equation for sandwich beam deflection including transverse shear. Composite Struct., 102, 29-37.
  14. Damanpack A. R., Khalili S. M. R., 2012. High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method. Composite Struct., 94 (5), 1503-1514.
  15. Bekuit J. J. R. B., Oguamanam D. C. D., Damisa O., 2007. A quasi-2D finite element formulation for the analysis of sandwich beams. Finite Elem. Anal. Design, 43 (14), 1099-1107.
  16. Singh R., Davies P., Bajaj A. K., 2003. Estimation of the dynamical properties of polyurethane foam through use of Prony series. J. Sound Vib., 264, 1005-1043.
  17. Pintelon R., Guillaume P., Vanlanduit S., Belder K., Rolain Y., 2004. Identification of Young’s modulus from broadband modal analysis experiments. Mech. Syst. Signal Process, 18 (4), 699-726.
  18. Caracciolo R., Gasparetto A., Giovagnoni M., 2004. An experimental technique for complete dynamic characterization of a viscoelastic material. J. Sound Vib., 272, 1013-1032.
  19. Yang W. P., Chen L. W., Wang C. C., 2005. Vibration and dynamic stability of a traveling sandwich beam. J. Sound Vib., 285, 597-614.
  20. Park J., 2005. Transfer function methods to measure dynamic mechanical properties of complex structures. J. Sound Vib., 288, 57-79.
  21. Kim S., Kreider K. L., 2006. Parameter identification for nonlinear elastic and viscoelastic plates. Appl. Num. Math., 56 (12), 1538-1544.
  22. Chang W. D., 2006. An improved real-coded genetic algorithm for parameters estimation of nonlinear systems. Mech. Syst. Signal Proc., 20, 236-246.
  23. Backström D., Nilsson A. C., 2007. Modelling the vibration of sandwich beams using frequency-dependent parameters. J. Sound Vib., 300, 589-611.
  24. Zhen W., Wanji C., 2008. An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams. Composite Struct., 84, 337-349.
  25. Tagarielli V. L., Deshpande V. S., Fleck N. A., 2010. Prediction of the dynamic response of composite sandwich beams under shock loading. Int. J. Impact Eng., 37 (7), 854-864.
  26. Ivañez I., Santiuste C., Saez S. S., 2010. FEM analysis of dynamic flexural behaviour of composite sandwich beams with foam core. Composite Struct., 92, 2285-2291.
  27. Storn R., Price K., 1997. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces., J. Glob. Opt., 11 (4), 341-359.
  28. Blum C., Li X., 2008. Swarm intelligence in optimization: Introduction and Applications. Springer, Heildelberg.
  29. Zienkiewicz O. C., Taylor R. L., 2000. Finite Element Method: Volume 1 The Basis. Butterworth-Heinemann, Oxford.
  30. Logan D. L., 2011. A First Course in the Finite Element Method. Cengage Learning, Platteville.
  31. Pitz T., 2004. Frequency power law of material damping. Appl. Acoust, 65, 1027-1036.
  32. Barbieri N., Barbieri R., Winikes L. C., Oresten L. F., 2008. Estimation of parameters of a three-layered sandwich beam. J. Mech. Mater. Struct., 3 (3), 527-544.
Index Terms

Computer Science
Information Sciences

Keywords

Sandwich beam Optimization Young’s Modulus GA PSO DE.