We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Stability of k-Tribonacci Functional Equation in Non-Archimedean Space

by Roji Lather, Manoj Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 128 - Number 14
Year of Publication: 2015
Authors: Roji Lather, Manoj Kumar
10.5120/ijca2015906754

Roji Lather, Manoj Kumar . Stability of k-Tribonacci Functional Equation in Non-Archimedean Space. International Journal of Computer Applications. 128, 14 ( October 2015), 27-30. DOI=10.5120/ijca2015906754

@article{ 10.5120/ijca2015906754,
author = { Roji Lather, Manoj Kumar },
title = { Stability of k-Tribonacci Functional Equation in Non-Archimedean Space },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 128 },
number = { 14 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 27-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume128/number14/22943-2015906754/ },
doi = { 10.5120/ijca2015906754 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:21:42.918793+05:30
%A Roji Lather
%A Manoj Kumar
%T Stability of k-Tribonacci Functional Equation in Non-Archimedean Space
%J International Journal of Computer Applications
%@ 0975-8887
%V 128
%N 14
%P 27-30
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Throughout this paper, we investigate the Hyers-Ulam stability of k-Tribonacci functional equation if (k, x) = k f(k, x – 1) + f( k, x – 2) + f(k, x – 3) in the class of functions f : N × R → X where X is real non-archimeadean Banach space.

References
  1. A. H. Sales, About K-Fibonacci numbers and their associated numbers; Int. J. of Math Forum, Vol. 6, no.50, (2011) 2473- 2479.
  2. D. H. Hyers, On the stability if linear functional equation, Proc. Natl. Acad. Sci. USA. 27(1941) 221-224.
  3. D. H. Hyers, G. Isac and Th. M Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, 1998.
  4. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44(1992) 125-153.
  5. G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995) 143-190.
  6. J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Functional Anal. USA, 46 (1982) 126-130.
  7. M. Bidkham and M. Hosseini, Hyers - Ulam stability of K-Fibonacci functional equation, Int. J. Nonlinear Anal. Appl., 2 (2011) 42-49.
  8. M. Bidkham, M. Hosseini, C. park and M. Eshaghi Gordji, Nearly (k,s)- Fibonacci functional equations in β-normed spaces , Aequationes Math., 83 (2012) 131-141.
  9. M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations,LAP LAMBERT Academic Publishing, 2010.
  10. M. Eshaghi Gordji, A. Divandari, C. Park and D. Y. Shin ,Hyers-Ulam stability of a Tribonacci functional equation in 2-normed space , J. Comp. Anal. and Appl. Vol.6, No.3 (2014) 503-508.
  11. M. Gordji, M. Naderi and Th. M.Rassias: Solution and Stability of Tribonacci functional equation in Non- Archinedean Banach spaces (2011)67-74.
  12. M. S. Moslehian and Th. M. Rassias: Stability of functional equation in Non- Archimedean spaces, Applicable Analysis and Discrete Mathematics. 1 (2007) 325-334.
  13. M. Eshaghi Gordji , M. Bavand Savad Kouchi, M.Bidkham Additive- Cubic functional equation from addive groups into Non- Archimedean Banach spaces, Faculty of Sci. and Math.5 ( 2013) 731-738.
  14. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math . Anal. Appl. 184 (1994) 431-436.
  15. P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., 1 (2010) 11-18.
  16. R. Ger and P. Semrl, The stability of exponential equation, Proc. Amer. Math. Soc., 124 (1996) 779-787.
  17. S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
  18. S. Jung, Hyers-Ulam stability of Fibonacci functional equation, Bull. Iranian Math. Soc., 35 (2009) 217-227.
  19. S. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011. xiv+362pp. ISBN: 978-1-4419-9636-7.
  20. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York,1940.
  21. T. Aoki: On the stability of linear transformation in Banach spaces, J. Math. Soc. Jpn. 2, (1950) 64-66.
  22. Th. M. Rassias, On the stability ofthe linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297-300.
  23. Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992) 125-153.
  24. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991) 431-434.
Index Terms

Computer Science
Information Sciences

Keywords

Hyers-Ulam Stability Real Non-archimedean Banach Space k-Tribonacci functional equation.