CFP last date
20 February 2025
Reseach Article

An Approach for Recommender System by Combining Collaborative Filtering with User Demographics and Items Genres

by Saurabh Kumar Tiwari, Shailendra Kumar Shrivastava
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 128 - Number 13
Year of Publication: 2015
Authors: Saurabh Kumar Tiwari, Shailendra Kumar Shrivastava
10.5120/ijca2015906724

Saurabh Kumar Tiwari, Shailendra Kumar Shrivastava . An Approach for Recommender System by Combining Collaborative Filtering with User Demographics and Items Genres. International Journal of Computer Applications. 128, 13 ( October 2015), 16-24. DOI=10.5120/ijca2015906724

@article{ 10.5120/ijca2015906724,
author = { Saurabh Kumar Tiwari, Shailendra Kumar Shrivastava },
title = { An Approach for Recommender System by Combining Collaborative Filtering with User Demographics and Items Genres },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 128 },
number = { 13 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 16-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume128/number13/22933-2015906724/ },
doi = { 10.5120/ijca2015906724 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:21:32.225321+05:30
%A Saurabh Kumar Tiwari
%A Shailendra Kumar Shrivastava
%T An Approach for Recommender System by Combining Collaborative Filtering with User Demographics and Items Genres
%J International Journal of Computer Applications
%@ 0975-8887
%V 128
%N 13
%P 16-24
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

With the explosion of service based web application like online news, shopping, bidding, libraries great amount of information is available. Due to this information overload problem, to find right thing is a tedious task for the user. A recommender system can be used to suggest customized information according to user preferences Collaborative filtering techniques play a vital role in designing the recommendation systems. The collaborative filtering technique based recommender system may suffer with cold start problem i.e. new user problem and new item problem and scalability issues. Traditional K-Nearest Neighbor Technique also suffers with user and item cold start problem.In this paper recommender system generates suggestions for user by combining collaborating filtering on transaction data with rating predicted with user demographics and item similarity. The final rating is weighted sum of ratings computed from transaction data, user data and item data. The advantage of proposed system that recommender system can deal with cold start in case of "new user" or “new item” .and Also system has low MAE and RMSE in comparison of traditional collaborative filtering based on K-Nearest Neighbor approach.

References
  1. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749.
  2. Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132.
  3. Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2014). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics.
  4. Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009, 4.
  5. Cacheda, F., Carneiro, V., Fernández, D., & Formoso, V. (2011). Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Transactions on the Web (TWEB), 5(1), 2.
  6. Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. In Applications of Data Mining to Electronic Commerce (pp. 115-153). Springer US.
  7. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.
  8. Gupta, J., & Gadge, J. (2015, January). Performance analysis of recommendation system based on collaborative filtering and demographics. In Communication, Information & Computing Technology (ICCICT), 2015 International Conference on (pp. 1-6). IEEE.
  9. Kantor, P. B., Rokach, L., Ricci, F., & Shapira, B. (2011). Recommender systems handbook. Springer.
  10. MovieLens dataset, http://www.grouplens.org/data/ (as of 2003)
  11. Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques: concepts and techniques. Elsevier.
  12. Schafer, J. (2009). The Application of Data-Mining to Recommender Systems. Encyclopedia of data warehousing and mining, 1, 44-48.
  13. Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4), 395-416.
  14. Geyer-Schulz, A., & Hahsler, M. (2002, May). Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory. In proceedings WEBKDD (pp. 100-114).
  15. Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6), 393-408.
  16. Thorat, P. B., Goudar, R. M., & Barve, S. (2015). Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System. International Journal of Computer Applications, 110(4).
  17. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). ACM.
  18. Billsus, D., & Pazzani, M. (1997, June). Learning probabilistic user models. InUM97 Workshop on Machine Learning for User Modelling.
  19. Fischer, G. (2001). User modelling in human–computer interaction. User modelling and user-adapted interaction, 11(1-2), 65-86.
  20. Mahmood, T., & Ricci, F. (2007). Towards Learning User-Adaptive State Models in a Conversational Recommender System. In LWA (pp. 373-378).
  21. Berkovsky, S., Kuflik, T., & Ricci, F. (2008). Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction, 18(3), 245-286.
  22. Berkovsky, S., Kuflik, T., & Ricci, F. (2009). Cross-representation mediation of user models. User Modeling and User-Adapted Interaction, 19(1-2), 35-63.
  23. Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web (pp. 291-324). Springer Berlin Heidelberg.
  24. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000, October). Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference on Electronic commerce (pp. 158-167). ACM.
  25. Shardanand, U., & Maes, P. (1995, May). Social information filtering: algorithms for automating “word of mouth”. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 210-217). ACM Press/Addison-Wesley Publishing Co.
  26. Sheth, B., & Maes, P. (1993, March). Evolving agents for personalized information filtering. In Artificial Intelligence for Applications, 1993. proceedings., Ninth Conference on (pp. 345-352). IEEE.
  27. Billsus, D., & Pazzani, M. J. (2000). User modeling for adaptive news access. User modelling and user-adapted interaction, 10(2-3), 147-180.
  28. Zhang, Y., Callan, J., & Minka, T. (2002, August). Novelty and redundancy detection in adaptive filtering. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 81-88). ACM.
  29. Bobadilla, J. E. S. U. S., Serradilla, F., & Hernando, A. (2009). Collaborative filtering adapted to recommender systems of e-learning. Knowledge-Based Systems, 22(4), 261-265.
  30. Ortega, F., SáNchez, J. L., Bobadilla, J., & GutiéRrez, A. (2013). Improving collaborative filtering-based recommender systems results using Pareto dominance. Information Sciences, 239, 50-61.
  31. Bobadilla, J., Ortega, F., & Hernando, A. (2012). A collaborative filtering similarity measure based on singularities. Information Processing & Management, 48(2), 204-217.
  32. Boley, D., Gini, M., Gross, R., Han, E. H. S., Hastings, K., Karypis, G. & Moore, J. (1999). Document categorization and query generation on the World Wide Web using webace. Artificial Intelligence Review, 13(5-6), 365-391.
  33. Pirolli, P., Pitkow, J., & Rao, R. (1996, April). Silk from a sow's ear: extracting usable structures from the Web. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 118-125). ACM.
  34. Etzioni, O. (1996). The World-Wide Web: quagmire or gold mine? Communications of the ACM, 39(11), 65-68.
  35. R.Malarvizhi, K.Saraswathi "Web Content Mining Techniques Tools & Algorithms – A Comprehensive Study" International Journal of Computer Trends and Technology (IJCTT) ,V4(8):2940-2945 August Issue 2013
  36. Sharma, K., Shrivastava, G., & Kumar, V. (2011, April). Web mining: Today and tomorrow. In Electronics Computer Technology (ICECT), 2011 3rd International Conference on (Vol. 1, pp. 399-403). IEEE.
  37. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.
  38. Hu, R., & Lu, Y. (2006, November). A hybrid user and item-based collaborative filtering with smoothing on sparse data. In Artificial Reality and Telexistence--Workshops, 2006. ICAT'06. 16th International Conference on (pp. 184-189). IEEE.
  39. Gong, S. (2010). A collaborative filtering recommendation algorithm based on user clustering and item clustering. Journal of Software, 5(7), 745-752.
  40. Zhang, Y., & Liu, Y. (2010, April). A Collaborative filtering algorithm based on time period partition. In Intelligent Information Technology and Security Informatics (IITSI), 2010 Third International Symposium on (pp. 777-780). IEEE.
  41. Puntheeranurak, S., & Chaiwitooanukool, T. (2011, July). An Item-based collaborative filtering method using Item-based hybrid similarity. In Software Engineering and Service Science (ICSESS), 2011 IEEE 2nd International Conference on (pp. 469-472). IEEE.
  42. Sun, D., Luo, Z., & Zhang, F. (2011, October). A novel approach for collaborative filtering to alleviate the new item cold-start problem. In Communications and Information Technologies (ISCIT), 2011 11th International Symposium on (pp. 402-406). IEEE.
  43. Chikhaoui, B.; Chiazzaro, M.; Shengrui Wang, "An Improved Hybrid Recommender System by Combining Predictions," in Advanced Information Networking and Applications (WAINA), 2011 IEEE Workshops of International Conference on , vol., no., pp.644-649, 22-25 March 2011
  44. Moghaddam, S. G., & Selamat, A. (2011, October). A scalable collaborative recommender algorithm based on user density-based clustering. In Data Mining and Intelligent Information Technology Applications (ICMiA), 2011 3rd International Conference on (pp. 246-249). IEEE.
  45. Bobadilla, J., Ortega, F., Hernando, A., & Alcalá, J. (2011). Improving collaborative filtering recommender system results and performance using genetic algorithms. Knowledge-based systems, 24(8), 1310-1316.
  46. Sun, D., Luo, Z., & Zhang, F. (2011, October). A novel approach for collaborative filtering to alleviate the new item cold-start problem. In Communications and Information Technologies (ISCIT), 2011 11th International Symposium on (pp. 402-406). IEEE.
  47. WEN, J., & ZHOU, W. (2012). An Improved Item-based Collaborative Filtering Algorithm Based on Clustering Method. Journal of Computational Information Systems, 571-578.
  48. Xie, F., Xu, M., & Chen, Z. (2012, March). RBRA: A simple and efficient rating-based recommender algorithm to cope with sparsity in recommender systems. In Advanced Information Networking and Applications Workshops (WAINA), 2012 26th International Conference on (pp. 306-311). IEEE.
Index Terms

Computer Science
Information Sciences

Keywords

Recommendation System Collaborative Filtering Cold start demographic filtering K-Nearest Neighbor Method.