CFP last date
20 December 2024
Reseach Article

Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition

by Savita Ratheee, Kusum Dhingra
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 127 - Number 8
Year of Publication: 2015
Authors: Savita Ratheee, Kusum Dhingra
10.5120/ijca2015906386

Savita Ratheee, Kusum Dhingra . Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition. International Journal of Computer Applications. 127, 8 ( October 2015), 8-11. DOI=10.5120/ijca2015906386

@article{ 10.5120/ijca2015906386,
author = { Savita Ratheee, Kusum Dhingra },
title = { Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 127 },
number = { 8 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 8-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume127/number8/22747-2015906386/ },
doi = { 10.5120/ijca2015906386 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:19:19.117264+05:30
%A Savita Ratheee
%A Kusum Dhingra
%T Best Proximity Point for Generalized Geraghty-Contractions with MT-Condition
%J International Journal of Computer Applications
%@ 0975-8887
%V 127
%N 8
%P 8-11
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A best proximity point for a non-selfmapping is that point whose distance from its image is as small as possible. In mathematical language, if X is any space, A and B are two subsets of X and T: A → B is a mapping. We can say that x is best proximity point if d(x, Tx) = d(A, B) and this best proximity point reduces to fixed point if mapping T is a selfmapping. The main objective in this paper is to prove the best proximity point theorem for the notion of Geraghty-contractions by using MT-function β which satisfies Mizoguchi-Takahashi’s condition (equation (i)) in the context of metric space and we also provide an example to support our main result.

References
  1. Al-Thagafi, M.A. and Shahzad, N: Convergence and existence results for best proximity points, Nonlinear Anal. 70(10), 3665-3671(2009).
  2. Bilgili, N., Karapinar,E. and Sadarangani K.: A generalization for the best proximity point of Geraghty-contractions,2013,1-9(2013).
  3. Anuradha, J. and Veeramani, P.: Proximal pointwise contraction, Topo. Appl., 156, 2942-2948(2009).
  4. Basha, SS. And Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103, 119-129(2000).
  5. Caballero, J., Harjani, J. and Sadarangani, K.: A best proximity point theorem for Geraghty contractions, Fixed Point Theory and Application, 2012, 231(2012).
  6. Eldred, AA. and Veeramani, P.: Existence and convergence of best proximity points, J. Math. Anal. Appl., 323, 1001-1006(2006) .
  7. Geraghty, M.: On contractive mappings, Proc. Am. Math. Soc., 40, 604-608(1973).
  8. Jleli, M. and Samet, B.: Best proximity points for α- ψ-proximal contractive type mappings and applications, Bull. Sci. Math., 2013. Doi:10.1016/j.bulsci.2013.02.003.
  9. Karapinar, E.: Best proximity points of cyclic mappings, Appl. Math. lett., 25(11), 1761-1766(2012).
  10. Karapinar, E. and Erhan, YM.:Best proximity point on different type contractions, Appl. Math. Inf. Sci.,3(3), 342-353(2011).
  11. Karapinar, E.: Best proximity points of Kannan Type cyclic weak φ- contractions in ordered metric spaces, An. Stiint. Univ. Ovidius Constanta,20(3), 51-64(2012).
  12. Kirk, WA., Reich, S. and Veeramani, P.: Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim.,24, 851-862(2003).
  13. Markin, J. and Shahzad, N.: Best approximation theorems for nonexpansive and condensing mappings in hyperconvex spaces, Nonlinear Anal.,70, 2435-2441(2009).
  14. Mongkolkeha, C. and Kumam, P.: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl., 155, 215-226(2012).
  15. Mongkolkeha, C. and Kumam, P.:Some common best proximity points for proximity commuting mappings, Optim. Lett.,2012.Doi:10.1007/s11590-012-0525-1.
  16. Mongkolkeha, C., Cho, YJ. and Kumam, P.:Best proximity points for generalized proximal C-contraction mappings in metric spaces with partial orders, J. Inequal. Appl, 2013,94(2013).
  17. Raj, VS. and Veeramani, P.: Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol.,10, 21-28(2009).
  18. Raj, VS: A best proximity theorems for weakly contractive non-self mappings, Nonlinear Anal., 74,4804-4808(2011).
  19. Lin, I.J., Lakzian, H., Chou, Y.: On best proximity point theorems for new cyclic map, International Mathematic Forum, 7(2012), 1839-1849.
Index Terms

Computer Science
Information Sciences

Keywords

Best proximity point P-property MT-condition.