CFP last date
20 December 2024
Reseach Article

Segmentation of Optic Disc and Optic Cup to Calculate CDR using Kekre’s LUV Color Space for Detecting Glaucoma

by Rajesh B. Awate, Archana B. Patankar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 127 - Number 17
Year of Publication: 2015
Authors: Rajesh B. Awate, Archana B. Patankar
10.5120/ijca2015906712

Rajesh B. Awate, Archana B. Patankar . Segmentation of Optic Disc and Optic Cup to Calculate CDR using Kekre’s LUV Color Space for Detecting Glaucoma. International Journal of Computer Applications. 127, 17 ( October 2015), 7-11. DOI=10.5120/ijca2015906712

@article{ 10.5120/ijca2015906712,
author = { Rajesh B. Awate, Archana B. Patankar },
title = { Segmentation of Optic Disc and Optic Cup to Calculate CDR using Kekre’s LUV Color Space for Detecting Glaucoma },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 127 },
number = { 17 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 7-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume127/number17/22819-2015906712/ },
doi = { 10.5120/ijca2015906712 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:18:16.368042+05:30
%A Rajesh B. Awate
%A Archana B. Patankar
%T Segmentation of Optic Disc and Optic Cup to Calculate CDR using Kekre’s LUV Color Space for Detecting Glaucoma
%J International Journal of Computer Applications
%@ 0975-8887
%V 127
%N 17
%P 7-11
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Glaucoma is the term applied to an eye disease that gradually result in loss of vision by permanently harming the optic nerve, the nerve that transmits visual pictures to the brain. Glaucoma is the second leading cause of blindness worldwide. The retina is the deepest layer in the eye and the retinal nerve filaments transmit the visual sign from the photoreceptors in the eye to the mind through the pack going out of the eye, known as the optic nerve. Glaucoma leads to consistent and expedient harm of the retinal nerve fiber layer and consequently can prompt lasting visual impairment. Thus the finding of glaucoma at a prior stage is imperative for its treatment. Current tests using intraocular pressure (IOP) are not sufficiently delicate for populace based glaucoma screening. Glaucoma can be detected by finding out CDR. CDR Gives Cup to Disc ratio of Optic Cup and Optic Disc. CDR will be finding out by calculating Vertical diameter of Optic cup (OC) and Vertical diameter of Optic disc (OD). To find out Optic Disc and Optic Cup, Kekre’s LUV color space will be applied along with k-means clustering. On the off chance that the CDR proportion surpasses threshold level 0.6 it shows high risk of Glaucoma for the tried patient.

References
  1. J Cheng , J Liu, Y Xu, F Yin, D Wong, N Tan, D Tao, C Cheng, T Aung, and T Wong , “Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening ,” IEEE Trans. Med. Imag., vol. 32, no. 6, pp. 1019 - 1032, Jun. 2013. Ding, W. and Marchionini, G. 1997 A Study on Video Browsing Strategies. Technical Report. University of Maryland at College Park.
  2. A. Aquino, M. Gegundez-Arias, and D. Marin, “Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques,” IEEE Trans. Med. Imag., vol. 29, no. 11, pp. 1860–1869, Nov. 2010.Tavel, P. 2007 Modeling and Simulation Design. AK Peters Ltd.
  3. H Tjandrasa, A Wijayanti, and N SuciatiOptic ,”Nerve Head Segmentation Using Hough Transform and Active Contours,” TELKOMNIKA ,vol. 10, no. 3, pp. 1860–1869, July. 2012 .Forman, G. 2003. An extensive
  4. Empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3 (Mar. 2003), 1289-1305.
  5. Z. Zhang, B. H. Lee, J. Liu, D. W. K.Wong, N. M. Tan, J. H. Lim, F. S. Yin,W. M. Huang, and H. Li, “Optic disc region of interest localization in fundus image for glaucoma detection in argali,” in Proc. Int. Conf. Ind. Electron. Appl., 2010, pp. 1686–1689.
  6. Y.T. Yu, M.F. Lau, "A comparison of MC/DC, MUMCUT and several other coverage criteria for logical decisions", Journal of Systems and Software, 2005, in press.
  7. G. D. Joshi, J. Sivaswamy, and S. R. Krishnadas, “Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment,” IEEE Trans. Med. Imag., vol. 30, no. 6, pp. 1192–1205, Jun. 2011.
  8. Dr. H.B.Kekre, Sudeep D. Thepade, “Image Blending in Vista Creation using Kekre's LUV Color Space”, SPIT-IEEE Colloquium and International Conference, Sardar Patel Institute of Technology, Andheri, Mumbai, 04-05 Feb 2008.A. Aquino, M. Gegundez-Arias, and D. Marin, “Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques,” IEEE Trans. Med. Imag., vol. 29, no. 11, pp. 1860–1869, Nov. 2010.Tavel, P. 2007 Modeling and Simulati
  9. Dr. H.B.Kekre, Sudeep D. Thepade, “Boosting Block Truncation Coding using Kekre’s LUV Color Space for Image Retrieval”, WASET International Journal of Electrical, Computer and System Engineering (IJECSE), Volume 2, Number 3, pp. 172-180, Summer 2008.Z. Zhang, B. H. Lee, J. Liu, D. W. K.Wong, N. M. Tan, J. H. Lim, F. S. Yin,W. M. Huang, and H. Li, “Optic disc region of interest localization in fundus image for glaucoma detection in argali,” in Proc. Int. Conf. Ind. Electron. Appl., 2010, pp. 1686
  10. Dr. H. B. Kekre, Archana Patankar, Hema Ramesh Galiyal, “Segmentation of blast using vector quantization technique”, International Journal of Computer Application Security, 72(15), 2013.
  11. R. Bock, J. Meier, L. G. Nyl, and G. Michelson, “Glaucoma risk index: Automated glaucoma detection from color fundus images,” Med. Image Anal., vol. 14, pp. 471–481, 2010.
  12. R. Bock, J. Meier, G. Michelson, L. G. Nyl, and J. Hornegger, “Classifying glaucoma with image-based features from fundus photographs,” Proc. 29th DAGM Conf. Pattern Recognit., pp. 355–364, 2007.
  13. J. Meier, R. Bock,G.Michelson, L. G. Nyl, and J. Hornegger, “Effects of preprocessing eye fundus images on appearance based glaucoma classification,” in Proc. 12th Int. Conf. Compute. Anal. Images Patterns, 2007, pp. 165–172.
  14. B. Payette, “Color Space Converter: RGB to YCrCb,” Xilinx Application Note, XAPP637, V1.0, September 2002.
  15. Baisa L. Gunjal and Suresh N. Mali ―Comparative Performance Analysis of DWT-SVD Based Color Image Watermarking Technique in YUV, RGB and YIQ Color Spaces‖ International Journal of Computer Theory and Engineering, Vol. 3, No. 6, December 2011.
Index Terms

Computer Science
Information Sciences

Keywords

Fundus retinal image glaucoma k-Means clustering Kekre’s LUV YCbCr YUV