CFP last date
20 January 2025
Reseach Article

Fingerprint Ridge Distance Estimation: A Mathematical Modeling

by Shing Chyi Chua, Eng Kiong Wong, Alan Wee Chiat Tan
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 126 - Number 15
Year of Publication: 2015
Authors: Shing Chyi Chua, Eng Kiong Wong, Alan Wee Chiat Tan
10.5120/ijca2015906308

Shing Chyi Chua, Eng Kiong Wong, Alan Wee Chiat Tan . Fingerprint Ridge Distance Estimation: A Mathematical Modeling. International Journal of Computer Applications. 126, 15 ( September 2015), 24-29. DOI=10.5120/ijca2015906308

@article{ 10.5120/ijca2015906308,
author = { Shing Chyi Chua, Eng Kiong Wong, Alan Wee Chiat Tan },
title = { Fingerprint Ridge Distance Estimation: A Mathematical Modeling },
journal = { International Journal of Computer Applications },
issue_date = { September 2015 },
volume = { 126 },
number = { 15 },
month = { September },
year = { 2015 },
issn = { 0975-8887 },
pages = { 24-29 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume126/number15/22629-2015906308/ },
doi = { 10.5120/ijca2015906308 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:17:42.577694+05:30
%A Shing Chyi Chua
%A Eng Kiong Wong
%A Alan Wee Chiat Tan
%T Fingerprint Ridge Distance Estimation: A Mathematical Modeling
%J International Journal of Computer Applications
%@ 0975-8887
%V 126
%N 15
%P 24-29
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, fingerprint image is mathematically modeled by using a 2D sinusoidal function in a local window of size 32x32. The estimated ridge distance is then found by using the Levenberg-Marquardt gradient descent method. From test images, it has been found that the error percentage is 5% or less for fingerprint images of good to moderate quality with ridge distances between five and 20 pixels corrupted with zero mean white Gaussian noise of variance levels between zero and 1.

References
  1. Wang, F., Yang, D., Cao, H., Sun, G., and Hu, Y., The Improved Fingerprint Ridge Distance Extraction Algorithm Based on Embedded Environment, Journal of Information & Computational Science 9(14) (2012), 4187-4197.
  2. Zhan, X., Sun, Z., Yin, Y., and Chu, Y., Fingerprint Ridge Distance Estimation: Algorithms and the Performance, Advances in Biometrics LNCS 3832 (2005), 294-301.
  3. Kovacs-Vajna, Z.M., Rovatti, R., and Frazzoni, M., Fingerprint Ridge Distance Computation Methodologies, Pattern Recognition 33 (2000), 69-80.
  4. Sutthiwichaiporn, P., and Areekul, V., Adaptive Boosted Spectral Filtering for Progressive Fingerprint Enhancement, Pattern Recognition 46 (2013), 2465-2486.
  5. Yin, Y., Tian, J., and Yang, X., Ridge Distance Estimation in Fingerprint Images: Algorithm and Performance Evaluation, EURASIP Journal on Applied Signal Processing (2004), 495-502.
  6. Hong, L., Wan, Y., and Jain, A., Fingerprint Image Enhancement: Algorithm and performance Evaluation, IEEE Transactions on Pattern Analysis and machine intelligence 20(8) (1998), 777-789.
  7. Porwik, P., and Wieclaw, L., A New Fingerprint Ridges Frequency Determination Method. IEICE Electronic Express 6(3) (2009), 154-160.
  8. Babatunde, I.G. , Charles, A.O. , and Olatunbosun, O., Uniformity Level Approach to Fingerprint Ridge Frequency Estimation, International Journal of Computer Application 61(22) (2013), 26-32.
  9. Maio, D., and Maltoni, D., Ridge-line Density Estimation in Digital Images, 14th International Conference on Pattern Recognition 1 (1998), 534-538.
  10. Kass, M., and Witkin, A., Analyzing Oriented Pattern, Computer Vision, Graphic, and Image Processing 37(3) (1987), 362-385.
  11. Rao, A., A Taxonomy for Texture Description and Identification, Springer-Verlag, New York, 1990.
  12. Marquardt, D.W., An Algorithm for Least-squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics 11(2) (1963), 431-441.
  13. Roweis, S., Levenberg-Marquardt Optimization, Available online: http://www.cs.nyu.edu/~roweis/notes/lm.pdf, last accessed: Apr. 2015.
  14. Bazen, A.M., and Gerez, S.H., Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7) (2002), 905-919.
  15. Jain, A.K., Prabhakar, S., Hong, L., and Pankanti, S., Filterbank-based Fingerprint Matching, IEEE Transactions on Image Processing 9(5) (2000), 846-859.
  16. Hastings, R., Ridge Enhancement in Fingerprint Images Using Oriented Diffusion, 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (2007), 245-252.
  17. Maltoni, D., Maio, D., Jain, A.K., and Prabhakar, S., Handbook of Fingerprint Recognition, Springer, 2009.
  18. Watson, C.I. and Wilson, C.L., NIST Special Database 4, Fingerprint Database, National Institute of Standard and Technology, 1992.
Index Terms

Computer Science
Information Sciences

Keywords

Fingerprint ridge distance estimation