CFP last date
20 December 2024
Reseach Article

A New Shear Wave Speed Estimation Method for Shear Wave Elasticity Imaging

by Mohammed A. Hassan, Nancy M. Salem, Mohamed I. El-Adawy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 125 - Number 8
Year of Publication: 2015
Authors: Mohammed A. Hassan, Nancy M. Salem, Mohamed I. El-Adawy
10.5120/ijca2015906130

Mohammed A. Hassan, Nancy M. Salem, Mohamed I. El-Adawy . A New Shear Wave Speed Estimation Method for Shear Wave Elasticity Imaging. International Journal of Computer Applications. 125, 8 ( September 2015), 48-53. DOI=10.5120/ijca2015906130

@article{ 10.5120/ijca2015906130,
author = { Mohammed A. Hassan, Nancy M. Salem, Mohamed I. El-Adawy },
title = { A New Shear Wave Speed Estimation Method for Shear Wave Elasticity Imaging },
journal = { International Journal of Computer Applications },
issue_date = { September 2015 },
volume = { 125 },
number = { 8 },
month = { September },
year = { 2015 },
issn = { 0975-8887 },
pages = { 48-53 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume125/number8/22456-2015906130/ },
doi = { 10.5120/ijca2015906130 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:15:32.310636+05:30
%A Mohammed A. Hassan
%A Nancy M. Salem
%A Mohamed I. El-Adawy
%T A New Shear Wave Speed Estimation Method for Shear Wave Elasticity Imaging
%J International Journal of Computer Applications
%@ 0975-8887
%V 125
%N 8
%P 48-53
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a novel method to estimate the shear wave speed is proposed. This method is a modified version of the lateral Time to Peak (TTP) method that estimates the induced shear wave speed. Lateral TTP algorithm finds the instance at which the maximum displacement is detected at each lateral location under examination at a certain depth. In the proposed algorithm each temporal displacement data is enhanced by fitting a Gaussian distribution into it prior to finding instance at which the peak displacement detected. This algorithm is validated on tracked displacements generated from a finite-element model (FEM) that simulates the dynamic response of tissues to acoustic radiation forces. The proposed algorithm reveals a reconstruction of materials having shear modulus of 1.33 kPa as 1.28±0.05 kPa, 2.835 kPa as 2.84±0.23 kPa, and 8 kPa as 7.94±0.58 kPa. However, lateral TTP method revealed a reconstruction of materials having shear modulus of 1.33 kPa as of 1.31 ± 0.03 kPa, and 8 kPa as 2.77 ± 0.08. Finally, Gaussian fitting can be used to enhance results obtained from Lateral TTP algorithm by providing a more accurate reconstruction of materials shear modulus.

References
  1. P. N. T. Wells and H.-D. Liang, "Medical ultrasound: imaging of soft tissue strain and elasticity," Journal of the Royal Society Interface, vol. 8, pp. 1521-1549, 2011.
  2. A. Sarvazyan, T. Hall, M. Urban, M. Fatemi, S. Aglyamov, and B. Garra, "Elasticity imaging-an emerging branch of medical imaging. An overview," Curr. Med. Imaging Rev, vol. 7, pp. 255-282, 2011.
  3. J. F. Greenleaf, M. Fatemi, and M. Insana, "Selected methods for imaging elastic properties of biological tissues," Annual review of biomedical engineering, vol. 5, pp. 57-78, 2003.
  4. B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, et al., "Elastography of breast lesions: initial clinical results," Radiology, vol. 202, pp. 79-86, 1997.
  5. E. S. Burnside, T. J. Hall, A. M. Sommer, G. K. Hesley, G. A. Sisney, W. E. Svensson, et al., "Differentiating benign from malignant solid breast masses with US strain Imaging1," Radiology, vol. 245, pp. 401-410, 2007.
  6. N. Miyanaga, H. Akaza, M. Yamakawa, T. Oikawa, N. Sekido, S. Hinotsu, et al., "Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report," International journal of urology, vol. 13, pp. 1514-1518, 2006.
  7. C. L. De Korte, G. Pasterkamp, A. F. Van Der Steen, H. A. Woutman, and N. Bom, "Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro," Circulation, vol. 102, pp. 617-623, 2000.
  8. S. Emelianov, X. Chen, M. O’Donnell, B. Knipp, D. Myers, T. Wakefield, et al., "Triplex ultrasound: elasticity imaging to age deep venous thrombosis," Ultrasound in medicine & biology, vol. 28, pp. 757-767, 2002.
  9. M. Vogt and H. Ermert, "Development and evaluation of a high-frequency ultrasound-based system for in vivo strain imaging of the skin," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, pp. 375-385, 2005.
  10. K. Kaluzynski, X. Chen, S. Y. Emelianov, A. R. Skovoroda, and M. O'Donnell, "Strain rate imaging using two-dimensional speckle tracking," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 48, pp. 1111-1123, 2001.
  11. G. Treece, J. Lindop, L. Chen, J. Housden, R. Prager, and A. Gee, "Real-time quasi-static ultrasound elastography," Interface focus, vol. 1, pp. 540-552, 2011.
  12. S. Rosenzweig, M. Palmeri, and K. Nightingale, "Analysis of rapid multi-focal-zone ARFI imaging," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 62, pp. 280-289, 2015.
  13. J. Foucher, E. Chanteloup, J. Vergniol, L. Castera, B. Le Bail, X. Adhoute, et al., "Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study," Gut, vol. 55, pp. 403-408, 2006.
  14. W. Nyborg, "Acoustic streaming," Physical acoustics, vol. 2, p. 265, 1965.
  15. P. G. Anderson, N. C. Rouze, and M. L. Palmeri, "Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms," Ultrasonic Imaging, vol. 33, pp. 134-142, Apr 2011.
  16. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics," Ultrasound in medicine & biology, vol. 24, pp. 1419-1435, 1998.
  17. M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, "A finite-element method model of soft tissue response to impulsive acoustic radiation force," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, pp. 1699-1712, 2005.
  18. K. Nightingale, R. Bentley, and G. Trahey, "Observations of tissue response to acoustic radiation force: opportunities for imaging," Ultrasonic imaging, vol. 24, pp. 129-138, 2002.
  19. M. Palmeri, H. Feltovich, A. Homyk, L. Carlson, and T. Hall, "Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 60, 2013.
  20. R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink, "Viscoelastic shear properties of in vivo breast lesions measured by MR elastography," Magnetic resonance imaging, vol. 23, pp. 159-165, 2005.
  21. T. E. Oliphant, A. Manduca, R. L. Ehman, and J. F. Greenleaf, "Complex‐valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation," Magnetic resonance in Medicine, vol. 45, pp. 299-310, 2001.
  22. J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: a new technique for soft tissue elasticity mapping," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 51, pp. 396-409, 2004.
  23. L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 49, pp. 426-435, 2002.
  24. K. Nightingale, S. McAleavey, and G. Trahey, "Shear-wave generation using acoustic radiation force: in vivo and ex vivo results," Ultrasound in medicine & biology, vol. 29, pp. 1715-1723, 2003.
  25. M. Yin, J. A. Talwalkar, K. J. Glaser, A. Manduca, R. C. Grimm, P. J. Rossman, et al., "Assessment of hepatic fibrosis with magnetic resonance elastography," Clinical Gastroenterology and Hepatology, vol. 5, pp. 1207-1213. e2, 2007.
  26. S. Chen, M. Fatemi, and J. F. Greenleaf, "Quantifying elasticity and viscosity from measurement of shear wave speed dispersion," The Journal of the Acoustical Society of America, vol. 115, p. 2781, 2004.
  27. S. A. McAleavey, M. Menon, and J. Orszulak, "Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force," Ultrasonic imaging, vol. 29, pp. 87-104, 2007.
  28. L. Sandrin, B. Fourquet, J.-M. Hasquenoph, S. Yon, C. Fournier, F. Mal, et al., "Transient elastography: a new noninvasive method for assessment of hepatic fibrosis," Ultrasound in medicine & biology, vol. 29, pp. 1705-1713, 2003.
  29. J. McLaughlin and D. Renzi, "Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging," Inverse Problems, vol. 22, p. 707, 2006.
  30. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, et al., "Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging," Ultrasound in medicine & biology, vol. 34, pp. 1373-1386, 2008.
  31. M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, "Quantifying hepatic shear modulus in vivo using acoustic radiation force," Ultrasound in Medicine and Biology, vol. 34, pp. 546-558, Apr 2008.
  32. J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 39, pp. 262-267, 1992.
  33. LS-DYNA3D 3.1. Available: http://www.lstc.com
  34. LS-PrePost. Available: http://www.lstc.com
  35. B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, "Acoustic radiation force impulse imaging of the abdomen: Demonstration of feasibility and utility," Ultrasound in Medicine and Biology, vol. 31, pp. 1185-1198, Sep 2005.
  36. Altair HyperMesh 10.0. Available: http://www.altairhyperworks.com
  37. T. J. Hughes, "The finite element method: linear static and dynamic finite element analysis.," Prentiss-Hall, Englewood Cliffs, NJ, 1987.
  38. M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, "Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 53, pp. 1300-1313, Jul 2006.
  39. G. F. Pinton, J. J. Dahl, and G. E. Trahey, "Rapid tracking of small displacements with ultrasound," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 53, pp. 1103-1117, 2006.
  40. N. C. Rouze, M. H. Wang, M. L. Palmeri, and K. R. Nightingale, "Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 59, pp. 1729-1740, 2012.
  41. G. McLachlan and D. Peel, Finite mixture models: John Wiley & Sons, 2004.
Index Terms

Computer Science
Information Sciences

Keywords

Shear wave elasticity imaging acoustic radiation force finite element method shear wave speed estimation lateral Time to Peak Gaussian fitting