CFP last date
20 January 2025
Reseach Article

Current Developments of Energy Scavenging, Converting and Storing in WSNs

by A.A. Bhaskar, R. Champawat, S.A. Bhaskar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 125 - Number 7
Year of Publication: 2015
Authors: A.A. Bhaskar, R. Champawat, S.A. Bhaskar
10.5120/ijca2015905946

A.A. Bhaskar, R. Champawat, S.A. Bhaskar . Current Developments of Energy Scavenging, Converting and Storing in WSNs. International Journal of Computer Applications. 125, 7 ( September 2015), 6-12. DOI=10.5120/ijca2015905946

@article{ 10.5120/ijca2015905946,
author = { A.A. Bhaskar, R. Champawat, S.A. Bhaskar },
title = { Current Developments of Energy Scavenging, Converting and Storing in WSNs },
journal = { International Journal of Computer Applications },
issue_date = { September 2015 },
volume = { 125 },
number = { 7 },
month = { September },
year = { 2015 },
issn = { 0975-8887 },
pages = { 6-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume125/number7/22442-2015905946/ },
doi = { 10.5120/ijca2015905946 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:15:23.064532+05:30
%A A.A. Bhaskar
%A R. Champawat
%A S.A. Bhaskar
%T Current Developments of Energy Scavenging, Converting and Storing in WSNs
%J International Journal of Computer Applications
%@ 0975-8887
%V 125
%N 7
%P 6-12
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Wireless sensor networks (WSNs) design requires multi-disciplinary approach in the field of wireless communication, embedded systems, networking, digital signal processing, hardware and software engineering. Major factors to influence the WSNs design are hardware and software constraints, scalability, cost, transmission media, network topology and power consumption etc. Most of WSN nodes are battery powered. With the limited capacity of batteries to power WSN nodes, need of energy harvester or scavenger is required to harvest or scavenge energy from the environment to improve the life-time of the sensor node. The harvested or scavenged energy is converted by power converters to recharge the sensor nodes or for the storage devices. This paper gives current developments of energy harvesting technologies, power converters and storage devices proposed by various researchers in WSNs along with some open research problems.

References
  1. Tentzeris, M. M. Georgiadis, A. and Roselli, L. 2014. Energy Harvesting and Scavenging, IEEE Guest Editor Proceedings of the IEEE, vol. 102, no. 11, pp.1644–1648.
  2. Knight, C. Davidson, J. and Behrens, S. 2008. Energy Options for Wireless Sensor Nodes, Sensors, vol. 8, no. 12, pp.8037-8066.
  3. Sankman, J. and Ma, D. 2015. A 12-μW to 1.1-mW AIM Piezoelectric Energy Harvester for Time-Varying Vibrations With 450-nA IQ, IEEE Transactions on Power Electronics, vol. 30, no. 2, pp.632–343.
  4. Harne, R. L. and Wang, K. W. 2013. A review of the recent research on vibration energy harvesting via bistasble systems, Smart Materials and Structures, vol. 22, no. 2, pp.023001.
  5. Stephen, N. G. 2006. On Energy Harvesting from Ambient Vibration, Journal of Sound and Vibration, vol. 293, no. 1-2, pp.409–425.
  6. Shearwood, C. and Yates, R. B. 1997. Development of an Electromagnetic Microgenerator, Electronics Letters, vol. 33, pp.1883–1884.
  7. Miki, S. Fujita, T. Kotoge T. et al., Electromagnetic energy harvester by using buried NdFeB, in Proc. IEEE 25th International Conference on MEMS, pp.1221–1224.
  8. Rahimi, A. Zorlu, O. Muhtaroglu, A. and Kulah, H. 2011. A vibration-based electromagnetic energy harvester system with highly efficient interface electronics, in Proc. 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, pp.2650–2653.
  9. Tao, K. Ding, G. Wang, P. Yang, Z. and Wang, Y. 2012. Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bondedmagnets, in Proc. IEEE 25th International Conference on MEMS, Paris, pp.1237–1240.
  10. Moghe, R. Yang, Y. Lambert, F. and Divan, D. 2009. A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications, in Proc. IEEE ECCE, San Jose, CA, pp.3550–557.
  11. Roundy, S. Wright, P. K. and Rabaey, J. 2003. A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes, Computer Communications, vol. 26, no. 11, pp.1131–1144.
  12. Kiziroglou, M. E. He, C. and Yeatman, E. M. 2010. Flexible substrate electrostatic energy harvester, IEEE Electronics Letters, vol. 46, no. 2, pp.166–167.
  13. He, C. Arora, A. Kiziroglou, M. E. Yates, D. C. Hare, D. O. and Yeatman, E. M. 2009. MEMS energy harvesting powered wireless biometric sensor, in Proc. BSN, Berkeley, CA, pp.207-212.
  14. Gilbertand, J. M. and Balouchi, F. 2008. Comparison of Energy Harvesting Systems for Wireless Sensor Networks,” International Journal of Automation and Computing, vol. 05, no. 4, pp.334-347.
  15. Sidek, O. Khalid, M. A. Ishak, M. Z. and Miskam, M. A. 2011. Design and simulation of SOI-MEMS electrostatic vibration energy harvester for micro power generation, in Proc. 1st InECCE, Pahang, pp.207–212.
  16. Sheu, G. J. Yang, S. M. and Lee, T. 2011. Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process, Sensors and Actuators, A: Physical, vol. 167, no. 1, pp.70–76.
  17. Torres, E. O. 2010. An Electrostatic CMOS/BiCMOS Li Ion Vibration-based Harvester- Charger IC, PhD thesis, Georgia Institute of Technology.
  18. Sarker, M. R. Sawal, H. Md. A. Othman, M. and Islam, S. 2013. Designing a Battery-Less Piezoelectric based Energy Harvesting Interface Circuit with 300 mV Startup Voltage, in Journal of Physics: Conference Series 431 3rd ISESCO IWCN, Malaysia, pp.65–73.
  19. Sankman, J. Ma, D. 2015. A 12-μW to 1.1-mW Aim Piezoelectric Energy Harvester for Time-Varying Vibrations With 450-nA, IEEE Transactions on Power Electronics, vol. 30, vol. 2, pp.632–643.
  20. Zorlu, O. Topal, E. T. and Kulah, H. 2011. A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method, IEEE Sensors Journal, vol. 11, no. 2, pp.481–488.
  21. Sari, I. Balkan, T. and Kulah, H. 2010. An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency up conversion technique, IEEE Journal of Microelectromechanical Systems, vol. 19, no. 1, pp.14–27.
  22. Tabbakh, S. R. K. Maarefdoust, R. Kyun, N. C. and Ali, B.Mohd. 2010. Environmental taxonomy of power scavenging techniques for autonomous self poweredwireless sensors, in Proc. APCCAS, Kuala Lumpur, pp.1031–1034.
  23. Roundy, S. Steingart, D. Frechette, Wright, L. P. and Rabaey, J. 2004. Power Sources for Wireless Sensor Networks, Lecture Notes in Computer Science, Springer.
  24. Vullers, R. J. M. Schaijk, R. van. Doms, I. Van Hoof, C. and Mertens, R. 2009. Micropower energy harvesting, Solid-State Electronics, vol. 53, no. 7, pp.684–693.
  25. Brunelli, D. Benini, L. Moser, C. and Thiele, L. 2008. An efficient solar energy harvester for wireless sensor nodes, in Proc. DATE, Munich, pp.104–109.
  26. Brunelli, D. Moser, C. Thiele, L. and Benini, L. 2009. Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems, IEEE Transaction on circuits and systems, vol. 56, no. 11, pp.2519–2528.
  27. Dondi, D. Bertacchini, A. Larcher, L. Pavan, P. Brunelli, D. and Benini, L. 2008. A solar energy harvesting circuit for low power applications, in Proc. ICSET, Singapore, pp.945–949.
  28. Dondi, D. Bertacchini, A. Brunelli, D. Larcher, L. and Benini, L. 2008. Modeling and Optimization of a Solar Energy Harvester System for Self-Powered Wireless Sensor Networks, IEEE Transactions on industrial electronics, vol. 55, no. 7, pp.2759-2766.
  29. Dondi, D. Brunelli, D. Benini, L. Pavan, P. Bertacchini, A. and Larcher, L. 2007. Photovoltaic cell modeling for solar energy powered sensor networks, in Proc. 2nd IEEE IWASI, Bari, pp.1–6.
  30. Hudak, N. S. and Amatucci, G. G. 2008. Small-scale energy harvesting through thermoelectric, vibration, and radio frequency power conversion, Journal of Applied Physics, vol. 103, no. 10, pp.101301.
  31. Su, J. Leonov, V. Goedbloed, M. Andel, Y. Nooijer, M. C. de Elfrink, R. Wang, Z. and Vullers, R. J. M. 2010. A batch process micromachined thermoelectric energy harvester: fabrication and characterization, Journal of Micromechanics and Microengineering, vol. 20, no. 10, pp.104005.
  32. Yang, S. M. Lee, T. and Cong, M. 2010. Design and verification of a thermoelectric energy harvester with stacked polysilicon thermocouples by CMOS process, Sensors and Actuators A: Physical, vol. 157, no. 2, pp.258-266.
  33. Lu, X. and Yang, S. H. 2010. Thermal energy harvesting for WSNs,” in Proc. IEEE SMC, Istanbul, pp. 3045-3052.
  34. Abbaspour, R. 2010. A practical approach to powering wireless sensor nodes by harvesting energy from heat ow in room temperature, in Proc. IEEE ICUMT, Moscow, pp. 178-181.
  35. Ravindran, S. K. T. Huesgen, T. Kroener, M. Woias, P. 2011. A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients, in Proc. 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, pp.657-660.
  36. Nguyen, H. Navid, A. and Pilon, L. 2010. Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting, Applied Thermal Engineering, vol. 30, no. 14-15, pp. 2127-2137.
  37. Moghe, R. Yang, Y. Lambert, F. and Divan, D. 2009. A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications,” in Proc. IEEE ECCE, San Jose, CA, pp. 3550-3557.
  38. Sim, Z. W. Shuttleworth, R. and Grieve, B. 2009. Investigation of PCB Microstrip Patch Receiving Antenna for Outdoor RF Energy Harvesting in Wireless Sensor Networks, in Proc. Antennas & Propogation Conference, Loughborough, pp. 129-132.
  39. Patel, A. C. Vaghela, M. P. Bajwa, H. and Patra, P. K. 2009. Power Harvesting for Low Power Wireless Sensor Network, in Proc. Antennas & Propogation Conference, Loughborough, pp. 633-636.
  40. Thomas, J. P. Qidwai, M. A. and Kellogg, J. C. 2006. Energy scavenging for small-scale unmanned systems, Journal of Power Sources, vol. 159, no. 2, pp.1494–1509.
  41. Arrawatia, M. Baghini, M. S. and Kumar, G. 2010. RF Energy Harvesting System at 2.67 and 5.8 GHz, in Proc. APMC, Yokohama, pp. 900–903.
  42. Sim, Z. W. Shuttleworth, R. Alexander, M. J. and Grieve, B. D. 2010. Compact patch antenna design for outdoor RF energy harvesting in wireless sensor networks, Progress in Electromagnetics Research, vol. 105, pp.273-294.
  43. Zakaria, Z. Zainuddin, N. A. Husain, M. N. Aziz, M. Z. A. A. Mutalib, M. A. and Othman, A. R. 2013. Current Developments of RF Energy Harvesting System for Wireless Sensor Networks, Advances in information Sciences and Service Sciences(AISS), vol. 5, pp. 328-338.
  44. Jabbar, H. Song, Y. S. and Jeong, T. T. 2010. RF energy harvesting system and circuits for charging of mobile devices, Consumer Electronics, IEEE Transactions on, vol.56, no. 1, pp.247-253.
  45. Mandal, S. Turicchia, L. and Sarpeshkar, R. 2010. A low-power, battery-free tag for body sensor networks, IEEE Pervasive Computing, vol. 9, no. 1, pp.71-77.
  46. Reinisch, H. Gruber, S. Unterassinger, H. Wiessecker, M. Hofer, G. Pribyl, W. and Holweg, G. 201. An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node, IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp.1728-1741.
  47. Heer, R. Wissenwasser, J. Milnera, M. Farmer, L. Hopfner, C. and Vellekoop, M. 2010. Wireless powered electronic sensors for biological applications, in Proc. IEEE EMBC, Buenos Aires, pp.700-703.
  48. Fei, F. Mai, J. D. and Li, W. J. 2012. A wind-flutter energy converter for powering wireless sensors, Sensors and Actuators A: Physical, vol. 173, no. 1, pp.163-171.
  49. Tan Y. K. and Panda, S. K. 2011. Optimized Wind Energy Harvesting System Using Resistance Emulator and Active Rectifier for Wireless Sensor Nodes, IEEE Transactions on Power Electronics, vol. 26, no. 1, pp.38-50.
  50. Tan Y. K. and Panda, S. K. 2011. Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread, IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 4, pp.1367-1377.
  51. Cammarano, A. Petrioli, C. and Spenza, D. 2012. Pro-Energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks, in Proc. IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, Las Vegas, NV, pp.75-83.
  52. Davis F. and Higson, S. P. J. 2007. Biofuel cells-recent advances and applications, Biosensors and Bioelectronics, vol. 22, no.7, pp.1224-1235.
  53. Hansen, B. J. Liu, Y. Yang, R. and Wang, Z. L. 2010. Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy, ACS Nano, vol. 4, no. 7, pp.3647–3652.
  54. Liu, F. Phipps, A. Horowitz, S. Ngo, K. Cattafesta, L. Nishida, T. and Sheplak, M. 2008. Acoustic energy harvesting using an electromechanical Helmholtz resonator, Journal of the Acoustical Society of America, vol. 123, no. 4, pp.1983-1990.
  55. Khan F. U. and Izhar. 2015. State of the art in acoustic energy harvesting, Journal of Micromechanics and Microengineering, vol. 25, no. 2, pp.023001.
  56. Dahiya, R. Arora A. K. and Singh, V. R. 2014. Design of Wireless Sensor Networks (WSN) in Energy Conversion Module Based On Multiplier Circuits, International Journal of Engineering and Innovative Technology (IJEIT), vol. 3, no. 12, pp.127-131.
  57. Rao S.V. and Balaji, A. 2013. A Novel AC–DC Step-Up Converter For Energy Harvesting, International Journal of Engineering Research and Development, vol. 8, no. 1, pp.60-72.
  58. Sudevalayam, S. and Kulkarni, P. 2010. Energy Harvesting Sensor Nodes: Survey and Implications, IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp.443-461.
  59. Guan M. J. and Liao, W. H. 2006. On the energy storage devices in piezoelectric energy harvesting, in Proc. SPIE 6169, Smart Structures and Materials, San Diego, CA, pp. 58-64.
Index Terms

Computer Science
Information Sciences

Keywords

Energy Harvesting Power Management System Wireless Sensor Networks Power Convertors Energy Storage Devices.